Managing Water Quality of Nursery Runoff Using Constructed Wetlands

OCLWA Annual Conference

April 6, 2017

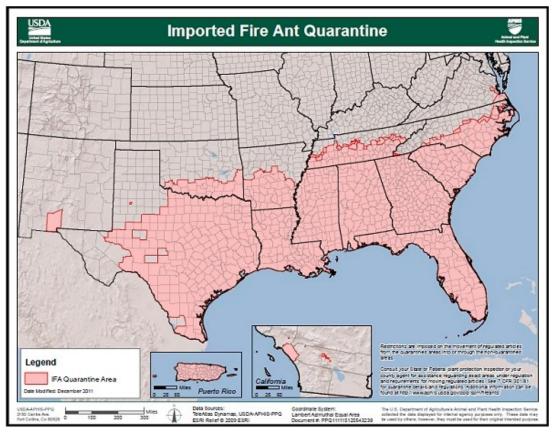
JOHN MCMAINE

BIOSYSTEMS AND AGRICULTURAL ENGINEERING

OKLAHOMA STATE UNIVERSITY

JOHN.MCMAINE@OKSTATE.EDU

Background


Nursery Industry Impact

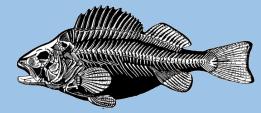
- US Economy (Hodges et al., 2015)
 - 2 Million jobs (1.11% US workforce)
 - \$136 Billion direct industry output (0.72% US GDP)
- Oklahoma Economy (Hodges et al., 2015)
 - 19,300 jobs
 - \$1.3 Billion direct industry output

Nurseries are required to incorporate insecticide into product leaving the quarantine area.

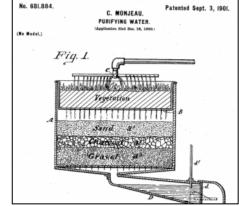
Bifenthrin concentrations in leachate 100x greater than LC₅₀ for *H. azteca* (Graves et al., 2014)

Are pesticides a problem in urban streams?

- Comparison of pesticides in eight U.S. urban streams (Hoffman et al., 2000)
 - Insecticides and herbicides present in all streams
 - Carbaryl and diazinon exceeded aquatic life protection standards
 - Estimated that U.S. insecticide contributions are similar between agricultural and urban areas
- Range of properties, difficulty targeting individual pesticides



ARE CONSTRUCTED WETLANDS EFFECTIVE FOR REMOVING PESTICIDES AND NUTRIENTS FROM GREENHOUSE AND NURSERY RUNOFF?



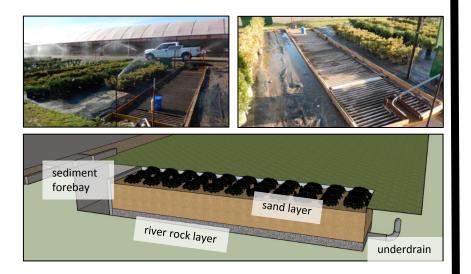
Constructed Wetlands

- First documented use 1901 patent for wastewater treatment
- Käthe Seidel early 1950s in Germany
- Early applications revolved around plants
- Introduced for wastewater treatment in 1950s
- Agricultural runoff 1980s, 1990s

Wikimedia Commons

Constructed Wetlands

- Two common designs
 - Free surface constructed wetlands remain saturated with ponded water
 - Subsurface flow constructed wetlands a layer of soil remains saturated and a layer of soil is able to drain
- Imitates natural wetland conditions
- Continually saturated
- Pollutant removal mechanisms
 - Filtration
 - Sorption
 - Microbial degradation
 - Chemical transformation



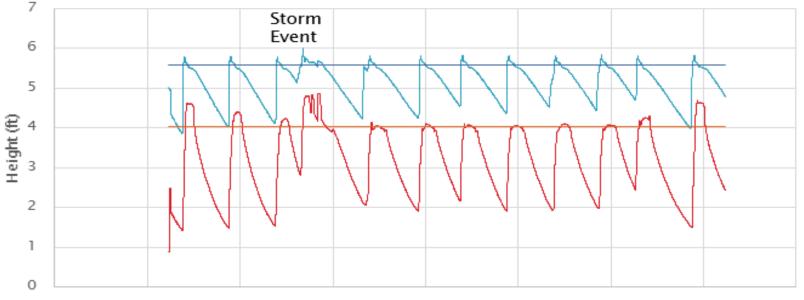
Field Experiments

Overview of Projects

- Precure Nursery
 - Retail nursery 16 acres
 - Subsurface flow constructed wetland

- Zelenka Farms
 - Wholesale nursery 450 acres
 - Free surface constructed wetland

"Typical" Irrigation Event



Typical System Hydrology

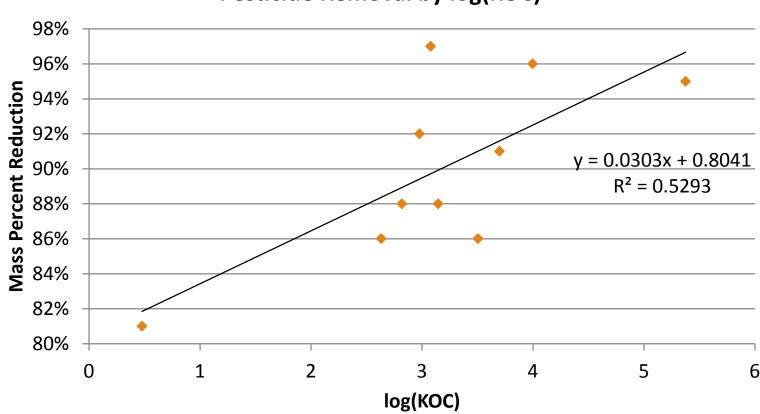
Precure Subsurface-flow Constructed Wetland Water Level

9/15/2015 9/17/2015 9/19/2015 9/21/2015 9/23/2015 9/25/2015 9/27/2015 9/29/2015 10/1/2015

Date

-Cell Water Level (ft)

- Underdrain Outflow Elevation
- -Forebay and Cell Overflow Elevation


Water Quality Preliminary Results

Constituent	Average Mass Removal	# of Events
Volume	78%	16
NO_3^- (Nitrate)	86%	16
PO_4^{3-} (Phosphate)	79%	16
Total Nitrogen	85%	14
Total Phosphorus	78%	14
Total Suspended Solids	89%	9

Water Quality Preliminary Results (cont.)

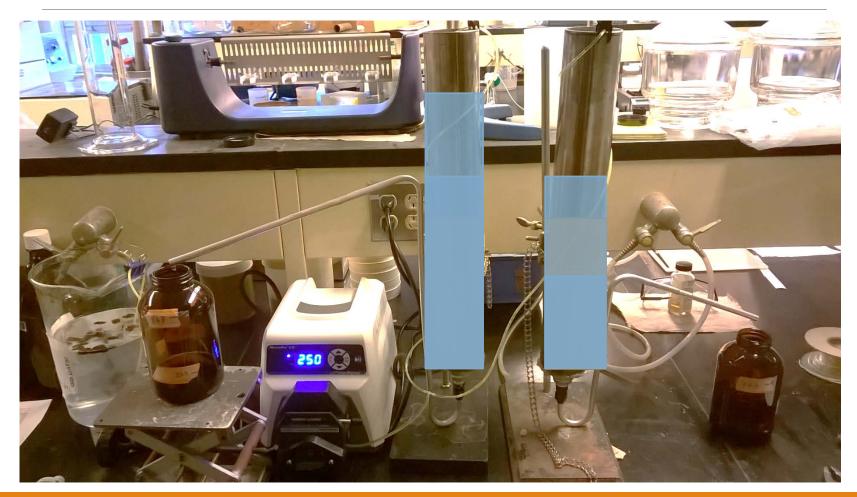
Constituent	К _{ос}	Pesticide Type	Average Mass Removal	# of Events Analyzed	# of Events Detected
Bifenthrin	237,000	Insecticide	95%	8	8
Chlorpyrifos	9,930	Insecticide	96%	8	4
Chlorothalonil	5,000	Fungicide	91%	8	8
Oxadiazon	3,200	Herbicide	86%	8	8
The State of California considers K _{oc} < 1,900 "mobile compounds"					
Isoxaben	1,400	Herbicide	88%	8	7
Dimethanamid	1,200	Herbicide	97%	8	6
Myclobutanil	950	Fungicide	92%	8	8
Propiconazole	660	Fungicide	88%	8	8
Indaziflam	430	Herbicide	86%	8	5
Acephate	3	Insecticide	81%	8	3

Water Quality Preliminary Results (cont.)

Pesticide Removal by log(KOC)

Highlights

- Out of 16 analyzed pesticides
 - 14 were reported at least once
 - 10 were reported in over half of the analyzed inflow samples
- High capacity to infiltrate runoff 82% volume reduction for 102 irrigation events
- Effective reduction of immobile and mobile compounds



Further Questions

- How do saturation conditions affect pesticide removal?
 - Comparison of subsurface-flow and free surface constructed wetlands
- How does event frequency affect pesticide removal?

Column Experiments

Conclusions and Future Work

- Nursery runoff has high potential for negative environmental impact
- Constructed wetlands show potential to be an effective runoff management tool
- Are constructed wetlands effective long-term?

- How do saturation conditions affect pesticide removal?
- How does event frequency affect pesticide removal?

Managing Water Quality of Nursery Runoff Using Constructed Wetlands

OCLWA Annual Conference

April 6, 2017

JOHN MCMAINE

BIOSYSTEMS AND AGRICULTURAL ENGINEERING

OKLAHOMA STATE UNIVERSITY

JOHN.MCMAINE@OKSTATE.EDU

