Recreational Boating & Water Quality

Does heavy use change water quality?

Stephen J. Nikolai Laboratory Director GRDA-Water Quality Research Lab 420 HWY 28 Langley OK 74350 snikolai@grda.com

Authors: Stephen Nikolai, Dustin Browning, Matt Conrad, Richard Zamor, and Darrell Townsend

Introduction

- Recreational Boating is popular...
 - ~11.8 million registered boats in the USA (USCG, 2015)
 - ~204,000 boats registered in Oklahoma (USCG, 2015).
 - Boats have increased in size and horsepower over time

Grand Lake O' the Cherokees

- Important lake in Oklahoma for recreation
 Claimed to be the "3rd largest city in Oklahoma" on summer holiday weekends (anecdotal)
- Crowds concentrate in relatively small coves on holiday weekends

Grand Lake independence day boat counts

Rafting

Research Question

 Does "heavy use" lead to deleterious effects on water quality in popular coves?

- "Heavy Use" Defined:
 - coves that experience a high volume of recreational boaters who engage in swimming and rafting (boats tied together).
 ≥75 boats

Previous Work

- Boating activity has shown to affect water clarity nutrients, and algal growth (Yousef et al, 1980; Asplund, 1996).
 - Increases in Turbidity, Algae, and TP
 - Deeper lakes, turbid lakes, appear to be less affected.
 - Slow no wake zones tend to minimize impacts and are suggested BMPs

Expectations

- The number of boats in coves will be significantly greater on peak weekends vs off peak weekends.
- We expected to see positive relationships between changes in nutrients, chlorophyll, bacteria, and turbidity and the number of boats in a cove.
- We expected to see decreases in water clarity with increasing boats.

METHODS

Study Lake

- Lake: Grand Lake O' the Cherokee's
- Heavy Use Coves Selected:
 - Woodward Hollow (WH)
 50 acres
 - Summerfield Hollow (SH) 40 acres
 - Dripping Springs (DS)
 20 acres
 - Duck Creek (DC) 50 acres
 - All coves no wake except duck creek

Overview Map

Woodward Hollow

Summerfield Hollow

Dripping Springs

Duck Creek

Sampling Schedule

- Sampled <u>Before and After on 3 holiday</u> ("peak") and 3 "off peak" weekends from 3 sites per cove
- Counted Boats via Helicopter in the early afternoon

Tues.	Wed.	Thurs.	Fri.	Sat.	Sun.	Mon.
		Sample		Count		Sample
		WQ		(12-3 pm)		WQ
				44 44		

Sampling Methods

- Water samples were collected from 1 m using a van dorn
- Physiochemical parameters were collected using a YSI 6 series sonde.
- Samples were placed on ice for transport to the lab.

Statistical Methods

- Paired t-test (boat counts)
- $\overline{\Delta}$ Parameter=(Post weekend Pre weekend)
- Pearson Product Moment Correlation $-\overline{\Delta}$ Parameter vs. Number of Boats
- Linear Regression

RESULTS

Boat Counts

DATE	WEEKEND	LOCATION	BOATS
28-May-16	Memorial Day	Dripping Springs	183
28-May-16	Memorial Day	Duck Creek	34
28-May-16	Memorial Day	Summerfield Hollow	98
28-May-16	Memorial Day	Woodward Hollow	307
18-Jun-16	Off Peak	Dripping Springs	38
18-Jun-16	Off Peak	Duck Creek	48
18-Jun-16	Off Peak	Summerfield Hollow	45
18-Jun-16	Off Peak	Woodward Hollow	34
2-Jul-16	Independence Day	Dripping Springs	259
2-Jul-16	Independence Day	Duck Creek	126
2-Jul-16	Independence Day	Summerfield Hollow	273
2-Jul-16	Independence Day	Woodward Hollow	322
30-Jul-16	Off Peak	Dripping Springs	63
30-Jul-16	Off Peak	Duck Creek	6
30-Jul-16	Off Peak	Summerfield Hollow	21
30-Jul-16	Off Peak	Woodward Hollow	40
13-Aug-16	Off Peak	Dripping Springs	48
13-Aug-16	Off Peak	Duck Creek	13
13-Aug-16	Off Peak	Summerfield Hollow	17
13-Aug-16	Off Peak	Woodward Hollow	50
4-Sep-16	Labor Day	Dripping Springs	196* via water
4-Sep-16	Labor Day	Duck Creek	18*
4-Sep-16	Labor Day	Summerfield Hollow	116*
4-Sep-16	Labor Day	Woodward Hollow	325*

Boat Count Summary

	Off-Peak Weekends	Peak Weekends	Memorial Day	Independence Day	Labor Day
Mean	35	188	156	245	164
Median	39	190	141	266	156
s.d.	± 17	± 105	± 102	± 73	± 112

- Peak Weekends have ~5X the occupancy as off peak weekends
- Duck Creek tended to be variable; only displaying "heavy use" during Independency Day weekend
- During "Off-Peak" weekends, coves did not meet the definition of "heavy use".

$\overline{\Delta}$ vs. log₁₀(Boats)

$\overline{\Delta}$ Parameter	r	p/n	P value
$\overline{\Delta}$ Elevation	0.597	+	0.00207*
$\overline{\Delta}$ E. coli	0.381	+	0.0661*
$\overline{\Delta}$ enterococcus	-0.0483	-	0.840
$\overline{\Delta}$ Chlorophyll α	0.343	+	0.101*
⊼ Secchi	-0.288	-	0.173
$\overline{\Delta}$ Total Suspended Solids	-0.131	-	0.518
$\overline{\Delta}$ Total Phosphorus	0.108	+	0.616
$\overline{\Delta}$ Total Nitrogen	0.224	+	0.343
$\overline{\Delta}$ Orthophosphorus	-0.0257	-	0.914
$\overline{\Delta}$ Ammonia	-0.105	-	0.627
$\overline{\Delta}$ Nitrate + Nitrite	-0.0209	-	0.923

$\overline{\Delta}$ vs. log₁₀(Boats)

$\overline{\Delta}$ Parameter	r	p/n	P value
$\overline{\Delta}$ Temperature	.0448	+	0.843
$\overline{\Delta}$ Conductivity	-0.156	-	0.511
ΔpH	0.00652	+	0.977
$\overline{\Delta}$ YSI Chlorophyll α	0.355	+	0.105*
$\overline{\Delta}$ YSI Chlorophyll RFU	0.699	+	0.0122*
$\overline{\Delta}$ Dissolved Oxygen %	0.146	+	0.539
$\overline{\Delta}$ BGA (YSI Pychocyanin)	0.192	+	0.403
$\overline{\Delta}$ YSI Turbidity			

E. Coli

Power of performed test < desired power.

Chlorophyll a

Interesting Relationships

CONCLUSIONS

Expectations vs Reality

- Expected relationships between nutrients, algae, bacteria, and turbidity vs. the number of boats in the cove at peak recreation time were not observed.
 - Could be due to low power
 - Slow no wake may limit resuspension of nutrient
 - Occupancy may be a poor predictor of change
 - Additional study will be conducted in 2017

Possible reasons for Negative Results

- Changes in water quality as a result of "heavy use" may be:
 - Short Lived (i.e. "recovered" by the time we sample following heavy use)
 - Within the uncertainty of our current measurements
 - Overwhelmed by natural processes of nutrient cycling, algal growth dynamics, inflow etc.
 - Abated by existing slow no wake zones

Future Study

- Grand Lake "heavy use" coves will be sampled again in the same design in 2017.
- GRDA may deploy sondes unattended if safe locations can be found.
- Analysis of HF183

Acknowledgements

- GRDA Police
- Pilot Brian Lambert
- Interns: Nick Tipton & Kristina Baker

Questions/Comments

