A new method to use benthic chlorophyll *a* for water quality assessment

Brad Rogers, PhD candidate, Environmental Science Dan Storm, Professor, Biosystems Engineering Derek West, Undergraduate Student, Biosystems Engineering Andy Dzialowski, Associate Professor, Zoology **Bill Henley, Professor, Botany Oklahoma State University** Stillwater, Oklahoma **Support Provided by: Oklahoma Conservation Commission**

> US Environmental Protection Agency, Region VI OSU Environmental Sciences Graduate Program OSU Biosystems and Agricultural Engineering

Background

• Environmental monitoring

- EMAP (environmental monitoring and assessment program)
 - EPA wanted more comprehensive monitoring
 - Statistical comparisons
 - Long term trends
 - Prediction
 - Data storage

- Nonpoint source management program (Sec 319)
 - Water quality
 - Stream habitat
 - Aquatic communities

Biologic Monitoring

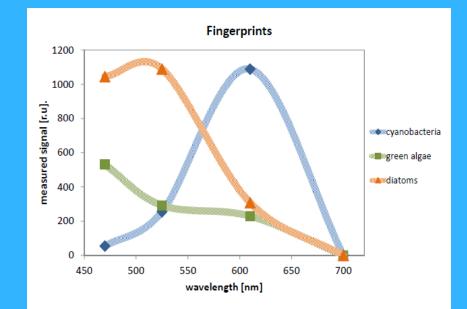
- Assess ecologic conditions
 - Includes adjacent land use/land cover
 - In Stream Habitat
 - Aquatic communities
 - Fish
 - Macrophytes
 - Periphyton

Tar Creek (Miami OK)

Periphyton Sampling Traditional Method

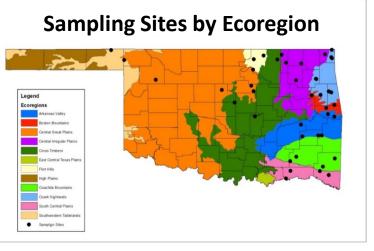
Periphyton Sampling BenthoTorch®

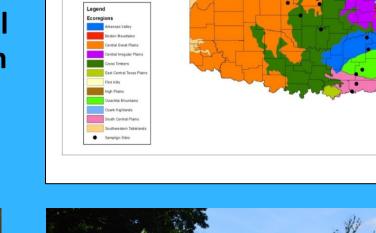
Commercial Fluorometer


- In situ and in vivo
- Provides results in 20 seconds
 - Stores files for later upload

- Measure total biomass (by chlorophyll fluorescence)
- Internal proprietary algorithm for relative abundance for three periphyton divisions
- Used in monitoring and research across the world
- Two published comparison with traditional method

BenthoTorch® Based on Principal of Fluorescence

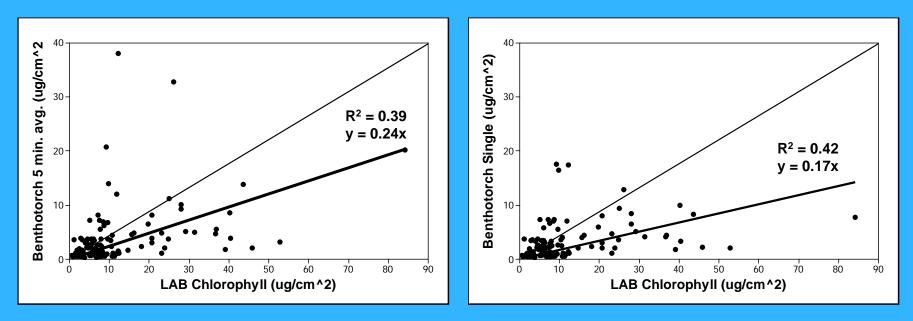

- LED wave lengths (nm): 470, 525, 610, 700
- Light directed at algae in pulses (PAM)
- Chlorophyll emits light at longer wavelength (Stokes Shift)
- 700 nm used to compensate for background reflection



BenthoTorch^{®®} Algal Class Fingerprint

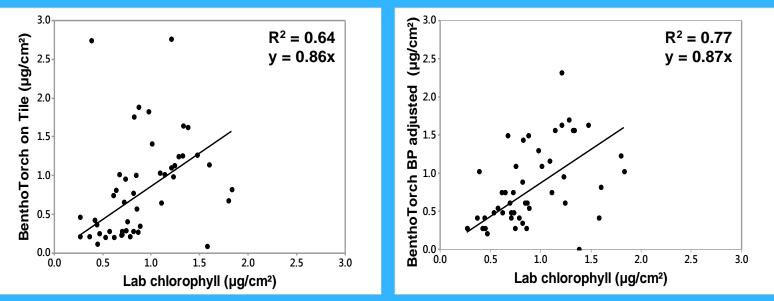
Objective

 Assess the accuracy of the **Benthotorch® compared to** traditional methods in estimating total benthic algal biomass across major stream types and conditions throughout Oklahoma



Results: Field 2014

- BenthoTorch[®]: no significant relationship with Taxonomist
- Using light adjustment & continuous measurements correlated better with laboratory results
- Variance within BenthoTorch[®] readings increased with increasing chlorophyll a
- Improved accuracy with non-filamentous


Laboratory Methods

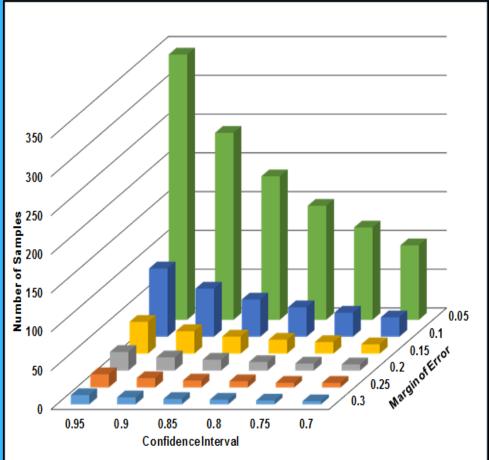
Sample collection **Microcosm setup Ceramic Tile Black Calibration Plate BenthoTorch Reading on** Spectrophotometer

Results: Laboratory 2015-2016 BenthoTorch[®] Comparison with Lab Extracted Chlorophyll

In Situ Tile

Black Calibration Plate

- Significant (α=0.05) and reasonable regression equations
- Mean BenthoTorch[®] vs lab chlorophyll *a* not significantly different (paired t-test, α=0.05)


Laboratory Study Conclusions

- BenthoTorch[®] In Situ Laboratory Tiles
 - Compares favorably in controlled environment with low chlorophyll *a* concentrations
- Modified Black Calibration Plate method looks promising for field conditions
 - Needs additional testing at sites with higher periphyton density
- BenthoTorch[®] likely a good tool to detect trends in periphyton density

Further Studies

- Stream reach characterization methods must be developed
- Number of BenthoTorch[®] samples to equal one traditional sample with specific confidence and margin of error.
- RMSE from lab experiment used as a predicted standard deviation in the sample-size estimate equation used by Montana DEQ (2011)
- Graph based on RMSE of 0.47 ug/cm² chlorophyll a
- Needs validation in field

Questions?

