Evaluation of the long-term performance of fly ash amended bioretention cells to remove phosphorous from stormwater

G. Brown, J. Vogel, D. Storm, S. Kandel, and C. Penn

OKLAHOMA STATE UNIVERSITY.

Bioretention Cells (BRC)

Stormwater runoff from urban areas transports a wide range of pollutants including P to receiving water bodies.

> BRC have been developed to treat runoff before it reaches

receiving bodies.

P removal in BRC has been reported to be highly variable, and in some cases, the cells have been an actual P source.

Grand Lake

Grand Lake, OK,
like many waters
in the U.S. suffers
due to phosphorus (P)
over-enrichment.

- Under EPA 319 funding through the Oklahoma Conservation Commission (2005-2008), eight BRC were built in Grove, OK in the Grand Lake basin with the specific goal of reducing P inflow to the lake.
- ➤ Under EPA 319 funding through the Oklahoma Department of the Environment (2012-2015), we have gone back and sampled the cells to quantify their performance.

11 Years of Work

- Find an inexpensive filter media with high P sorption.
 - ➤ Lab screening 5 50 KM 50 Miles
 - ➤ 1-D modeling
- Construct the Grove BRC
 - > Standardize design and document construction
 - ➤ Quantify filter media during construction
- Perform detailed 3-D modeling of "As-Built"
- Sample filter media and water to evaluate BRC performance after running for several years.

Filter Media Section

- Batch P sorption and desorption screening for K_d for several materials.
- Lab Column experiments simulated leaching within the cell and results fitted to find transport parameters.
- Long-term effluent 1-D modeled with fitted parameters.

Batch Phosphorous Adsorption

	K_d , mL/g
Peat moss	-5.8
Teller loam	0.41
Dougherty sand	2.1
Expanded shale, MO	1.2
Limestone	12
Expanded shale, KS	280
Class C fly ash	2180
Sand with 5% fly ash	300

Desorption

- Dougherty sand desorbed average 42% of initially sorbed P, expanded shale 7%, and sand and 5% fly ash negligible amounts.
- Selected sand with fly ash as BRC filter media.

Fly Ash

Class C fly ash, a byproduct of coal fueled electrical power plants, contains the metal oxides
CaO, MgO, Al₂O₃ and Fe₂O₄
(23, 5, 18, and 6% respectively in our samples).

Those oxides will react with phosphorous and heavy metals to form relativity insoluble minerals.

The fly ash used "passed" RCRA testing.

Concentration in leachate, mg/L				
Metal	Acetic acid solution	De-ionized water	Regulatory level, mg/L	
As	0.07	0.02	5.0	
Cd	0.00	0.00	1.0	
Pb	0.00	0.00	5.0	
Cr	0.33	0.03	5.0	
Se	0.28	0.02	1.0	

Column Experiments

- Column: 14.4 cm I.D., 14.3 cm long. Loading rate: 3 cm/hr.
- Influent concentration: 1 mg/L P.
- Evaluate P sorption in a dynamic condition. Model P transport in filter media.

1-D P Transport Modeling

One dimensional linear equilibrium adsorption convection-dispersion transport model in CXTFIT 2.1 in the STANMOD software package developed by the U.S.

Salinity Laboratory.

Fit observed
 breakthrough curves
 by the model to
 estimate
 hydrodynamic
 dispersion and
 sorption K_d.

Column K_d only $\frac{1}{4}$ of batch estimate.

1-D Model Estimated Lifetime

- Filter media: sand & 5% fly ash
- Depth: 1 m
- ➤ Inflow P: 1 mg/L
- ➤ Outflow P limit: 0.037 mg/L
- Fifty years daily precipitation data were used to estimate the runoff loading.

	Lifetime, yr	
	Pavements	Lawns
Transport K _d	4	11
Batch K_d	12	34

Construction: Design

- > 3% to 5% of area.
- Sized for runoff:
 - $\geq \frac{1}{2}$ " in pool
 - > ½" in filter
- ≥ 1' topsoil.
- Filter media a blend of sand and 5% fly ash.
- > Bottom drain to atmosphere.
- > Sand plugs on 25% of surface for infiltration.

Construction

As Built: Fly ash distribution

As Built Hydraulics

- Finite element model, 7.5 x 7.5 x 1.5 m, with 75,088 elements.
- > 9 configurations representing different constructions designs and construction quality examined.

3-D Modeling of flow and transport

- P sorption varied for each 1 liter volume using flay ash distribution measured during construction.
- 20 random realizations for each configuration
- > 180 simulations in total.

6 plug model K distribution

3-D Model Concentration Results

- > 17 nominal years of complete treatment
- More than 144 years of some P removal

3-D Model Effluent Concentration

2014 Sampling: Filter Media

- Six core samples from BRC at four sites.
- Analysis
 - ➤ Total acid digestion (EPA 3050) for total elemental P.
 - ➤ WSP extraction (1:10 soil:solution) for soluble P.
 - Mehlich-P (weak acid) extraction for plant available P.

2014 Sampling: Filter Media P

2014 Sampling: Filter Mineralogy

- Mineralogy of the adsorbed P determined with Bookhaven National Synchrotron Light Source II by X-ray absorption near edge structure analysis (XANES).
- Most P was held as calcium phosphates: brushite, monetite, hydroxyapatite, tricalcium P, and octacalcium P.

2014 Sampling: Water

Automated Samplers installed on inflow, drain and overflow.

> Volume weighted composite samples analyzed for each

storm event.

2014 Sampling: Water Total P Reduction

- > P concentration: 24 to 90% reduction
- > Total mass: 77 to 97% reduction

Model with PhROG: Using filter and water sampling results

Input

Output

Site hydrology

P removal & lifetime

- 1. Target P removal (%)
- 2. Annual flow volume 2. Target lifetime
- 3. Dissolved P level

1. Peak flow rate

4. Max footprint

PSM characterization

- 1. P sorption
- 2. Safety
- 3. Physical properties

Design parameters

- 1. Area
- 2. Mass of PSM
- 3. Depth of PSM
- 4. Pipe reqmt

Recently developed by Dr. Chad Penn, Plant & Soil Science (OSU)

Long term P removal

Other work on these cells includes

- > Heavy metal adsorption
- > Bacteria
- Construction costs
- Maintenance issues
- Planting
- > Plant survival
- Initial water quality
- > Hydraulics
- Construction standards

If someone wanted to work with these cells, call us.

Conclusions

- Fly ash amended filter media is effectively removing P from stormwater in the Grove BRC.
- The BRC are expected to continue to remove P for ~20 to 100+ years.
- All lab, modeling and field results justify expanded use of fly ash in stormwater systems where P is a concern.

