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Homeostasis and Elemental Imbalances
Cross et al., 2003

Deviation from strict 
homeostasis

Energetic cost for 
some taxa (Boersma
and Elser, 2006)

Consequences?
Trophic group Food resource Imbalance

C 53 C 54 C 53 C 54 C 53 C 54

Mean Range Mean Range Mean Mean Mean Mean

Shredders Leaf detritus

C : P 498 (136‐877) 252 (123‐610) 4858 3063 4360 2565



Shredder richness is often 
lower in Ozark streams with 
high total P

Shredder C:P is low in 
Ozark streams with high 
total P

Evans-White et al. unpublished data

P effects on shredders

Ability to cope
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Microbial activities
• Aquatic microbes decompose fallen leaves in streams

- N and P from leaves and water column
(Suberkropp 1998)

• Increase N & P leads to increased microbial activity

• Detritus is a basal food resource in forested streams

• Microbial colonization as the basis of invertebrate
consumer selection (Kaushik and Hynes, 1971)



• Factors affecting decomposition:
- Leaf nitrogen and phosphorus 
- Lignin content (Gessner and Chauvet, 1994)
- Dissolved N & P from the water column (Caraco et al., 1998)

Microbial decomposers
(e.g. nutrient content)

Leaf litter decomposition



Experimental and multi-scale 
observational studies

• Laboratory experiment at environmentally relevant
P concentrations

• In-stream experiment with nutrient diffusing
substrata (NDS)

• Multi-stream phosphorus gradient



Methods – Laboratory Exp.
• Sugar maple & post oak

Litter elemental composition:

-CHN elemental analyzer

-Ascorbic acid following persulfate digestion

P treatments: 0 P, 0.05 
mg/L, 0.5 mg/L 

Sampled on days: 0, 5, 
8, 13, 20, 28, 36, 43, 
59, 72, 95, 115, and 
139



Methods – In-stream Exp.

– Placed along 4 stream transects

– 12 sampling dates over 154 days

– C and P content

• NDS Units
– Agar

• High P, moderate P, or no P 
(control)

– 50 μm mesh litterbags
Water	
flow

Replaceable	
agar	
container

Leaf	litter	
mesh	bags

P	diffusion



In-stream experiment
Nutrient diffusing substrata

- P release rates
- pulse additions



Methods – Natural P gradient

Mixed leaf litter:
-CHN elemental 
analyzer
-ascorbic acid 
following HCl digest

Stream water:
-Ascorbic acid 
following persulfate
digestion



Statistical analyses

• Cumulative probability of threshold followed by one
way ANOVA post hoc means test, REGWQ

• ANOVA REGWQ

• Linear regression of leaf C:P versus TP in SigmaPlot



Laboratory experiment

Initial increase in C:P

Greater separation 
across P treatments in 
maple leaves

Divergence begins 
after ~ 20 and  60 
days for maple and 
oak, respectively



Laboratory experiment

Raw data for all 
treatments on all 
days

Non‐parametric 
change point analysis

When can a change 
in leaf chemistry be 
detected?



Treatment
C:P

Maple Oak

Control 2578 ± 705 A 2629 ± 553 A
Low P 825 ± 194 CD 1541 ± 205 B
High P 488 ± 55 D 953 ± 175 C

Laboratory experiment

* Means after day 70 ± 1 SD (n = 12)
* Means with same letter are not significantly different



In-stream experiment

• Treatment divergence 
starting on day 49 for maple, 
day 136 for oak

• Response to P enrichment 
faster in maple, slower in oak

• Response to P enrichment 
greater in maple
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In-stream experiment
Labile versus recalcitrant, P enrichment

Oak

Maple

C:P
Treatment Maple Oak

Control 2450 ± 346  A 2338 ± 192  A
High P 1665 ± 291  B 1833 ± 265  AB

* Means after day 100 ± 1 SD (n = 3)
* Means with same letter are not significantly different



Multi-stream phosphorus gradient

TP (µg L-1)
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Future Research

Importance of autotrophic component?
- variable P enrichment 
- variable light intensities

P enrichment / light effects on:
- algal biomass
- microbial respiration
- P uptake and release rates
- detrital stoichiometry



Conclusions
• Effects vary across leaf type and P concentration

• P enrichment may change litter C:P by an order
of magnitude between oligotrophic and eutrophic Ozark
streams

• Leaf stoichiometry varies in Ozark streams in response
to very minimal increases in P availability

• Potential negative effect on macroinvertebrate
communities



Thank you.

Questions?


