Oklahoma's National Water Quality Initiative Pilot Project

Assessment and Outreach Planning in the Little Beaver Creek Watershed

Greg Kloxin, Assistant Director Water Quality Division

National Water Quality Initiative (NWQI)

- USDA program to facilitate partnership of NRCS, EPA, and state water agencies in addressing NPS impaired watershed(s)
- Initiated in 2012, NRCS state office collaborated with

OCC to select candidates Stillwater, OK

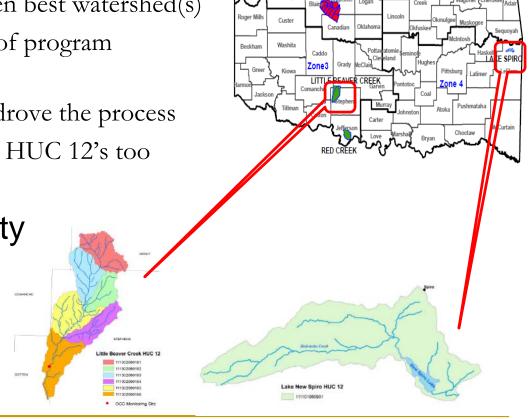
- Commitments
 - □ NRCS FA (5% EQIP allocation); TA (planning)
 - □ OCC recommend priority HUC(s); monitoring
 - \blacksquare EPA 319 funding; tech support

National Water Quality Initiative

A great idea, but...

No time to effectively screen best watershed(s)

Rollout preempted release of program guidance


□ FA commitment/timeline drove the process

Conservation planners find HUC 12's too restrictive

Switched to two priority watersheds

■ Little Beaver Creek

→ New Spiro Lake

KINGFISHER CREEK

Beaver Zone 1

Little Beaver Creek (LBC)

 Major trib to SWS and local recreation resource (Lake Waurika) impaired by nutrients and turbidity

- Impaired for pathogens, turbidity, TDS
- NPS Watershed Priority Rank 1 (Western OK)

Table 3. TMDL Percent Reductions Required to Meet Water Quality Targets for Enterococcus, E. coli, and total suspended solids (ODEQ 2012).

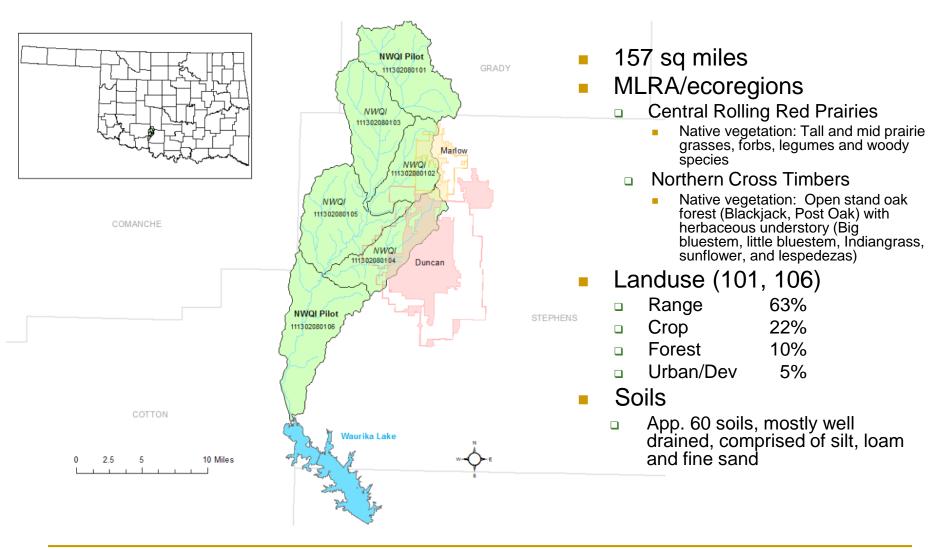
Waterbody ID	Waterbody Name	Entercoccus	E. coli	Total Suspended Solids*
OK311210000050_00	Little Beaver Creek	31%	86%	75%

^{*}TSS is used as a surrogate parameter for turbidity which cannot be expressed (and thus modeled) as a mass load

NWQI Pilot ("Readiness Phase")

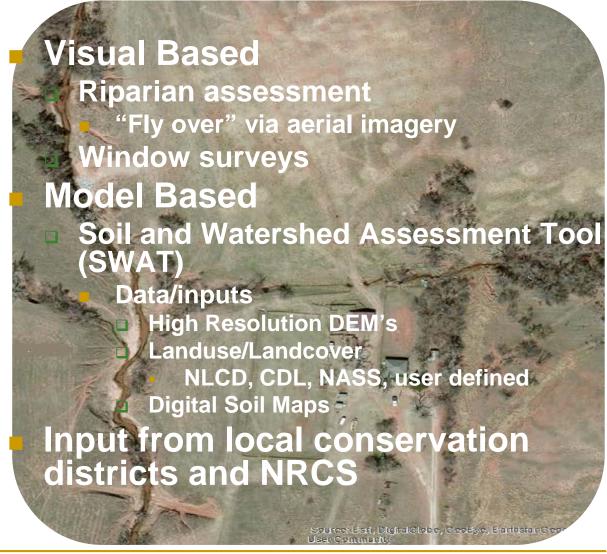
- Focus on preemptive watershed assessment and outreach planning Two deliverables:
 - □ Watershed Assessment plan
 - Outreach plan

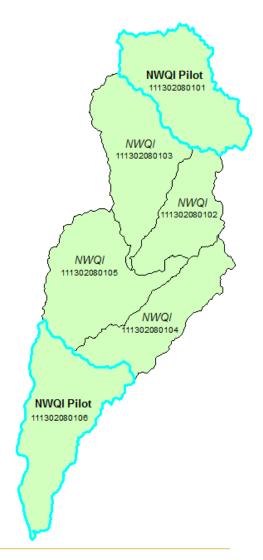
 OK's end game – develop repeatable model to deliver WQ focused conservation in priority NPS watersheds across the state



NWQI Pilot - Project Approach

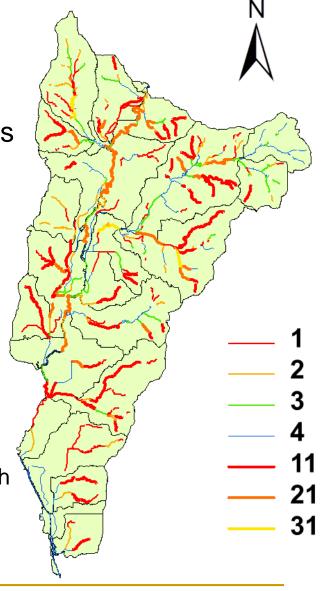
- Hire a shared FTE (WQ Liaison)
- Conduct watershed assessment (USDA guidance)
 - Research/vet various tools toward efficient characterization (e.g., PTMapp, ACPF, SWAT)
 - Employ tools to characterize hydrology, conduct resource analysis/source assessment, determine relative loads and vulnerable acres
- Conduct outreach planning
 - Build GIS tool to give to local conservation planners




Assessment Phase - Characterization

Assessment Process

Riparian Assessment


GIS project – latest data available

Imposed 15m buffer "screen" on NHD Hi-res "flowline to estimate riparian cover/stability

 Using high resolution ortho-imagery at 1:3000 scale, subsegmented and attributed reaches to reflect buffer conditions for:

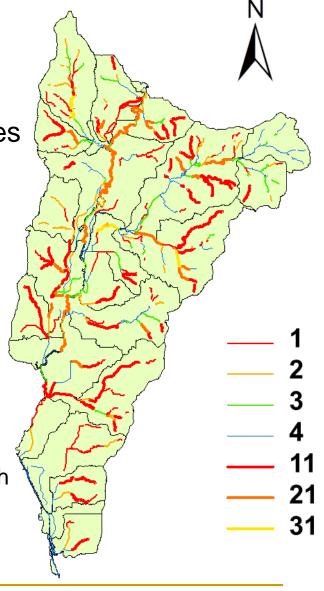
Perennial, woody vegetative cover

- 1 None apparent
- 2 Some apparent
- 3 Mostly fills buffer
- 4 Exceeds buffer
- Active erosion, gullying, and/or trailing
 Significant presence of either/both is indicated with a "1" after the riparian condition number (e.g., 11, 21, 31).

Riparian Assessment

Figure 13 Number 1. Road though creek, 2. Cattle tracks, 3. Gullies, 4. Lack of Riparian Vegetation, image B is a zoomed in image of A.

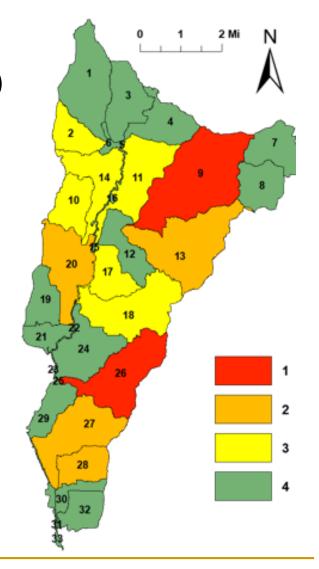
Riparian Assessment

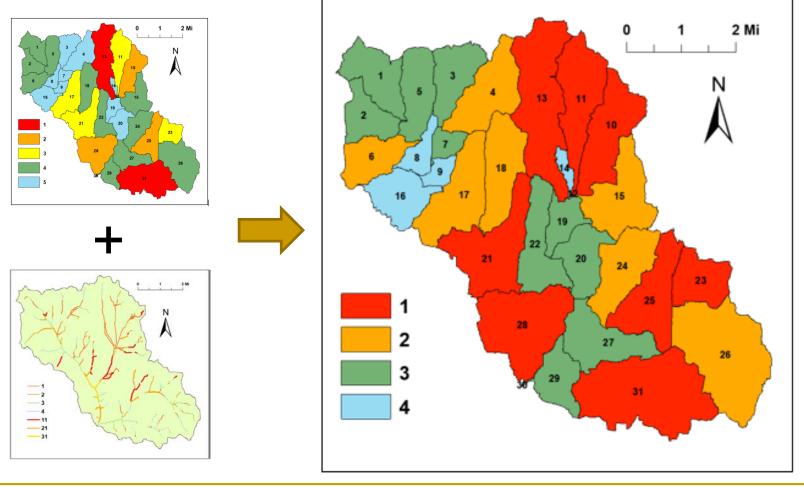

GIS project – latest data available

Imposed 15 m buffer "screen" on NHD Hi-res "flowline to estimate riparian cover/stability

 Using high resolution ortho-imagery at 1:3000 scale, subsegmented and attributed reaches to reflect buffer conditions for:

Perennial, woody vegetative cover


- 1 None apparent
- 2 Some apparent
- 3 Mostly fills buffer
- 4 Exceeds buffer
- Active erosion, gullying, and/or trailing
 Significant presence of either/both is indicated with a "1" after the riparian condition number (e.g., 11, 21, 31).


Modeled Assessment - SWAT

- •30 year simulation (5 year warmup)
- •5 meter DEM
- SSURGO soil layer
- NLCD 2011 Land Use
 - Generalized to remove minor contributors
 - All crops added to default SWAT designation (general agriculture)
- Input tolerance set to 10% for all inputs (LU, Soils, and slope)
- Ranked by total annual predicted sediment output (Tons)

Combined Assessments – Final Subbasin Rank

Analysis of Treatment & Opportunities

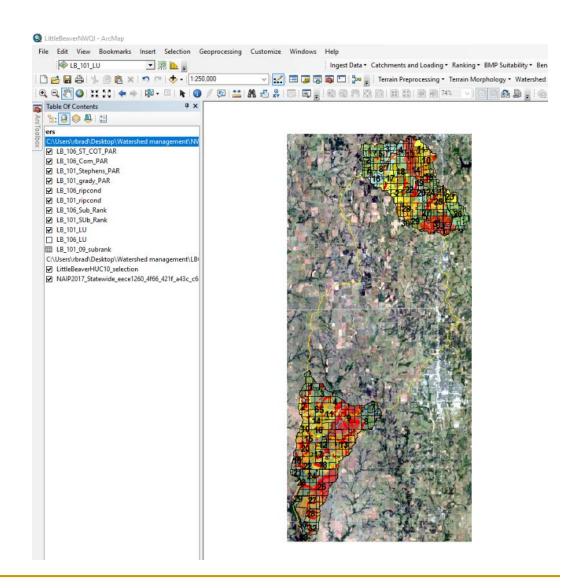
- Reviewed past conservation efforts (2003-2018) to determine historical coverage in 101 and 106
 - □ >19,000 acres or app. 40% of both HUCs
 - Most common CPs
 - Crop land residue management (no till, reduced till), cover crops, cropland conversion, forage and biomass plantings
 - Range/pasture grazing management, livestock watering systems
 - Marginal coincidence in currently identified critical areas
- Future conservation efforts informed by NWQI-P
 - Target priority subbasins/producers
 - Focus practices and ranking to emphasize riparian health/stability
 - Range Access control, watering systems, grazing management
 - Crop -Cover crops, cropland conversion, nutrient management

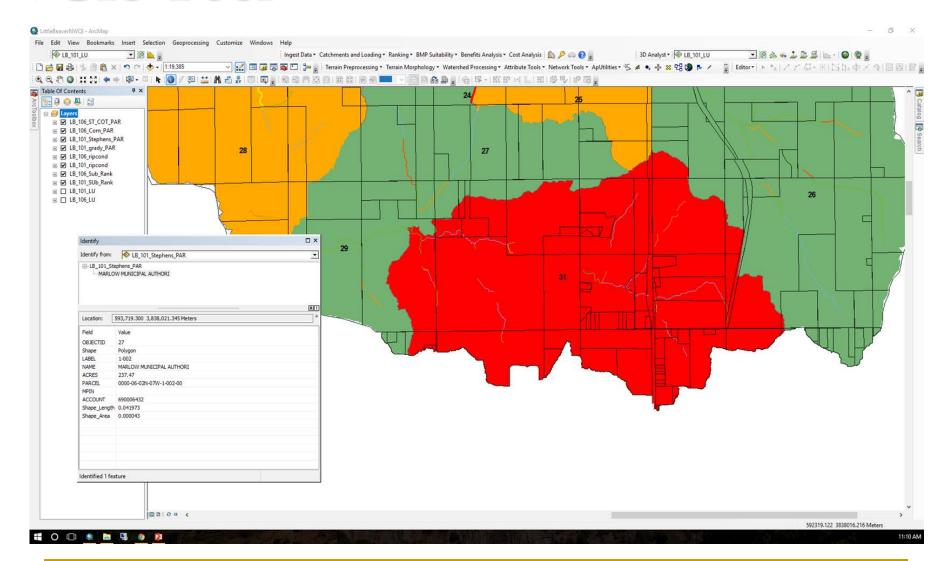
Proposed Implementation – Ex.

BMP &	Practice	101	106	total	unit	\$/unit	total cost	Assumed Participation /	NWQI	
Efficiency	code	unit	unit	units				Adoption Rate		
Range and Pasture										
Prescribed Grazing	528	6838	7941	14779	acres	\$11	\$162,569	50%	\$81,284.50	
Watering Systems for Livestock	614, 561, 642, 516	41	100	141	each	\$5,000	\$705,000	50%	\$352,500.00	
Nutrient Management (pasture)	590	3670	3670	7340	acres	\$17	\$124,780	40%	\$49,912.00	
Grade Stabilization Structures	410	5	3	8	each	\$12,000	\$96,000	40%	\$38,400.00	
Diversion Terrace	362	10750	6616	17366	cxds	\$2	\$34,732	40%	\$13,892.80	
Critical Area Planting	342	16	10	26	acres	\$275	\$7,150	40%	\$2,860.00	
Access Control	472	45	260	305	acres	\$24	\$7,320	50%	\$3,660.00	
Fencing	382	215339	529387	744726	feet	\$2	\$1,489,452	50%	\$744,726.00	
Range & Pasture Total						\$2,627,003	\$1,287,235.30			

Predicted Impact on Priority NPS

	Watershed	101			106			Total Predicted Reduction		
ВМР		N Reduction	P Reduction	Sediment Reduction	N Reduction	P Reduction	Sediment Reduction	N Reduction	P Reduction	Sediment Reduction
Range (landuse)	% total	lb/year	lb/year	t/year	lb/year	lb/year	t/year	lb/year	lb/year	t/year
Prescribed Grazing	31.47	7713	571	227	9753	703	269	17486.0	1273.8	496.1
Livestock Exclusion Fencing	1.78	289	20	15	766	50	36	1054.9	69.6	51.0
Alternative Water Supply	8.12	16	2	1	1709	189	76	1725.0	191.0	77.2
Nutrient Management 1 (Determined Rate)	12.08	1415	310	0	872	0	0	2287.2	310.2	0.0
Grade Stabilization Structures	2.13	9	1	0	2439	263	81	2448.0	284.2	81.2
Diversion Terrace	12.08	1246	342	120	823	224	76	2068.6	585.5	195.5
Critical Area Planting	0.06	0	1	1	6	1	0	15.0	2.3	1.1
Crop (landuse)										
Residue Management	8.50	1085	277	126	2950	787	496	4034.7	1084.3	622.2
Convert Crops to Grass	5.58	3005	791	252	271	69	35	3276.2	859.4	287.4
Nutrient Management	8.50	191	122	0	382	176	0	572.3	297.8	0.0
Cover Crops	8.50	380	82	34	929	222	132	1289.0	303.7	185.9
Critical Area Planting	0.02	3	1	1	0	0	0	3.3	1.2	0.6
Buffer Practices	0.69	122	39	16	105	32	19	227.3	71.8	34.4
Summed predicted reductions (watersheds combined)								45,643	7,801	3,089

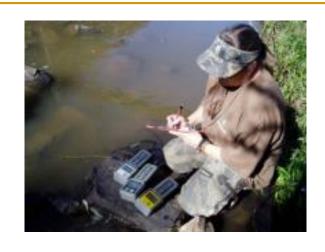

Outreach Phase

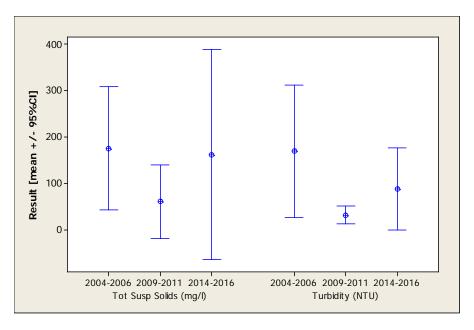

GIS Tool

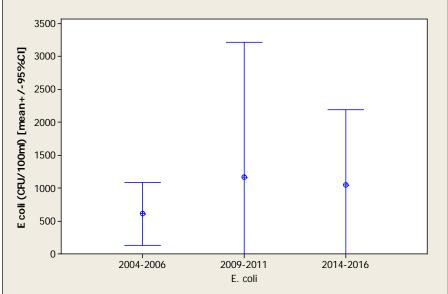
- Developed simple GIS tool
 - Watersheds
 - Riparian ratings
 - Sub basins rank
 - Parcel maps
 - Aerial images
 - Land use maps
- Excel files for each
 - Landowner
 - Sub Basin
 - Riparian Ranking
 - Sub basin rating

GIS Tool

Next Steps


- Meet with local conservation staff and equip with tool (Done!)
- Distill list of priority contacts for visits;
 mail outs to all (Done!)
- Hold field days/informational meetings
 - Soil Health focus
 - Grazing lands management
- Develop local watershed advisory group
- Develop application screening/ranking for EQIP rollout early summer (Draft in progress)
- Incentivize priority practices with 319 monies
- Expand effort into remaining watershed above the lake.



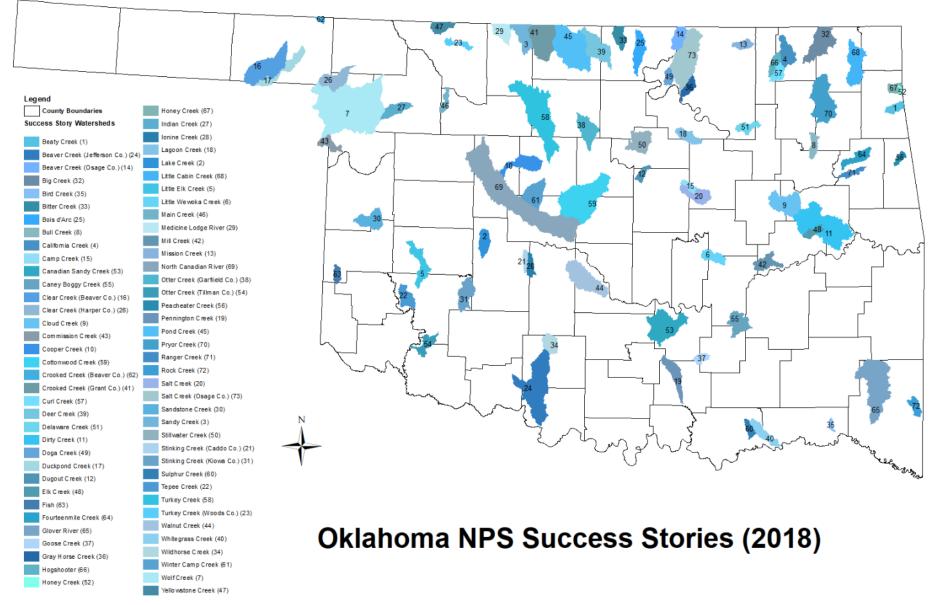


Next Steps

Continue Monitoring

Next Steps - Implementation!

2019 OCLWA Conference Stillwater, OK


Parting Thoughts

- We have a conservation planning model we can reproduce
- We have a shared position to accomplish the work

- We have access to conservation implementation data
- Success has bred success, opportunities, attention and...
- None of this is possible without an effective monitoring program!

See OK's 72 success stories on EPA's NPS Success Stories web page!

Questions?

Greg Kloxin, Assistant Director greg.kloxin@conservation.ok.gov 405-522-4737

Oklahoma Conservation Commission Water Quality Division 2800 N Lincoln Blvd Oklahoma City, OK 73105

