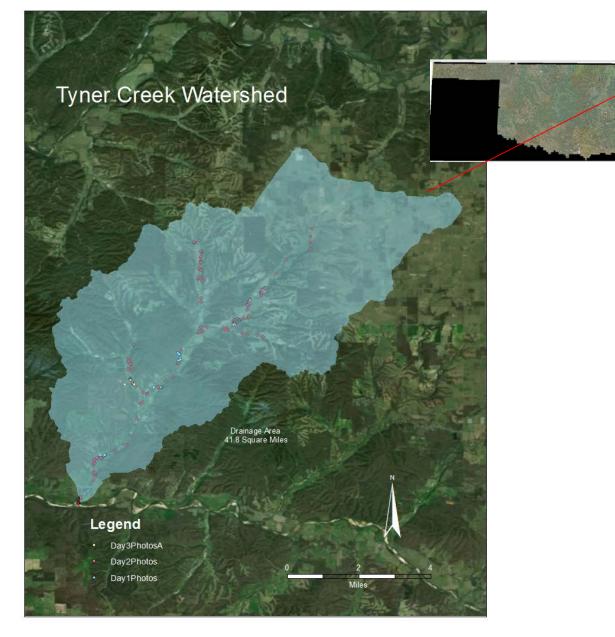
Tyner Creek Watershed Stream Stability Assessment

Reza Khakpour, PE, CFM & Russell Dutnell, Ph.D., P.E.

Presentation Outline

- Introduction
- Assessment Objectives
- Assessment Tasks
- Estimated cost of natural rehabilitation of the assessment reaches
- Summary



Introduction

olsson

- Tyner Creek is a tributary to the Baron Fork River.
- The confluence is located near Proctor, Oklahoma, approximately 11 miles ENE of Tahlequah.
- The Tyner Creek watershed has a drainage area of 41.8 square miles.
- The natural hydrology and sediment transport characteristics of the watershed have been altered.
- This has induced channel instability in Tyner Creek and its tributaries...
- Which has resulted in increased sediment loading and reduced aquatic habitat.

© 2019 Olsson

Introduction

- The Oklahoma Conservation Commission (OCC) is interested in applying natural stream rehabilitation methods to mitigate some of these impacts.
- OCC contracted with Olsson Associates and Riverman Engineering PLC to conduct a stream stability assessment in the watershed.

olsson

Assessment Objectives

- Identify unstable reaches of creek channels within the Tyner Creek watershed.
- Prioritize unstable reaches for potential application of natural stream rehabilitation methods.
- Develop preliminary construction cost estimates for rehabilitation of the high priority reaches.

Assessment Tasks

Task 1: Identify the extent of the stream channel network to be assessed.

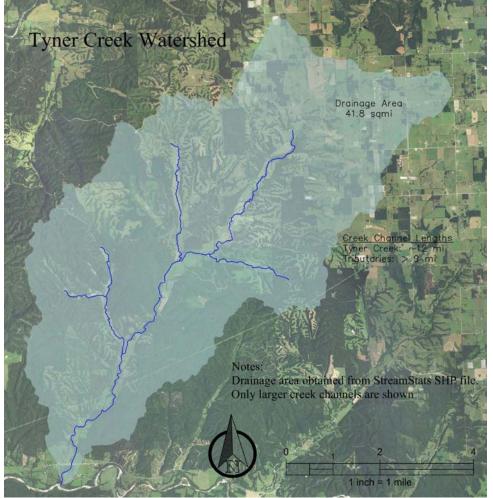
Task 2: Define the assessment reaches.

Task 3: Select method of assessment.

olsson

Task 4: Conduct field assessment of Tyner Creek and major tributaries.

Task 5: Prioritize assessed reaches for potential natural rehabilitation.

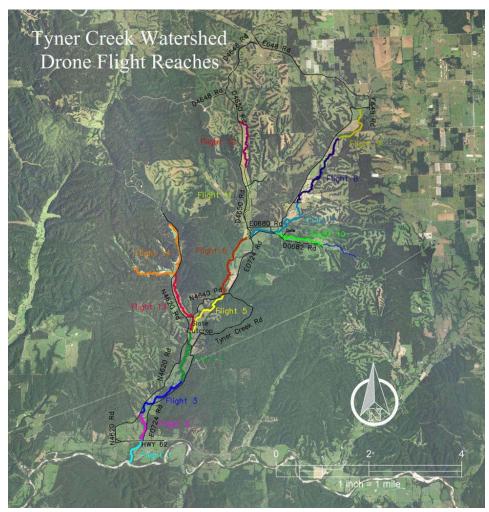

Task 6: Estimate cost of natural rehabilitation of the high priority reaches.

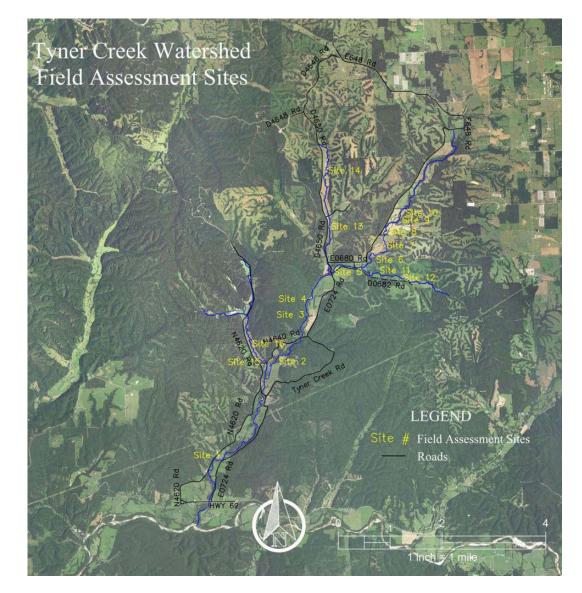
Task 7: Report writing and production of the final deliverables.

Task 1: Extent of the stream channel network to be assessed.

- Stream channels were identified by tracing the channels from the "ogi NAIP 2015 Composite" WMS connection to the Oklahoma Map Server, within AutoCAD Civil 3D.
- Google Earth imagery from March 2, 2017 was used to locate the channels when they were under tree canopies and difficult to locate in the 2015 imagery.
- The main stem of Tyner Creek extends more than 12 miles from the confluence with Baron Fork to the headwaters.
- There are more than 9 miles of tributary creek channels flowing into Tyner Creek.
- Note that there are many more channels within the watershed than shown in the figure, which includes only the channels deemed to be the most significant channels based on the 2015 and 2017 imagery.

Task 2: Delineation of the assessment reaches


- Initially it was anticipated that the assessment reaches would be identified by conducting a ground reconnaissance of the channels identified in Task 1.
- Instead, after a suggestion by Ed Fite, and some discussion, it was decided that the assessment reaches would be defined utilizing a drone outfitted with a camera.
- Mike Laird, with Olsson Associates flew a drone for us on October 6-7, 2017.
- The project engineers, observing the condition of the stream channel on a TV monitor in the back seat of a truck, would ask the pilot to stop the drone, and take a snap shot when a "site of concern" was observed.
- The still images thus taken are geographically referenced (i.e., the latitude and longitude are provided), allowing for precise location of the site photographed.


Task 2: Delineation of the assessment reaches

- The range of the drone is limited to approximately 1¹/₂ miles
- 14 "launch sites" were required to cover the channels identified in Task 1.
- The image shows the 14 reaches flown from these "launch sites".
- 71 snap shots were taken at "sites of concern".

olsson

Task 3: Method of assessment

- Having access to the drone data and snap shots altered the approach taken to assess the reaches identified in Task 2.
- The day after the drone flights of the watershed had been completed, the data obtained by the drone were reviewed.
- Focusing on the 71 sites of concern, the bed and bank characteristics of the channel and the condition of the riparian area at each site was observed.
- Using our best professional judgement (BPJ), and decades of collective experience assessing and restoring stream channels, we identified 16 priority reaches for field assessment.

Task 4: Field assessment of Tyner Creek assessment sites

- Field assessments of the 16 sites identified in Task 3 were conducted October 9-11, 2017.
- At 14 of the 16 sites, the entire length of each reach, varying from less than 100 yards to almost 800 yards, was walked, and the site was rated from "Very Low" to "Very High". (Two of the sites were not walked because the reaches were observed from the road and determined to be "Low" priority).
- Each of the project engineers applied their BPJ and independently rated the reaches from "Very Low" to "Very High", prioritizing each site for restoration from a fluvial geomorphic perspective ((i.e., the benefit restoration of the site would provide the river).
- On the rare occasions where their initial assessments differed, it was discussed until they were in agreement.

olsson

© 2019 Olsson

Task 4: Field assessment of Tyner Creek assessment sites

Assessment Site Descriptions

Site 6

olsson

Site Location: Geographical: Latitude: 36.03317°, Longitude: -94.71120° UTM Oklahoma (South Plane): Easting: 2940723.45'; Northing: 392560.74' Reach Length: ~630 yards Est. Project Cost: ~\$1,234,000

Task 4: Field assessment of Tyner Creek assessment sites

New	Total Length		Bank Length		Cost Est	
Site #	(yds)	Bank No	(yds)	Bank Height (ft)	(\$/ft)	Priority
1	498	1	56	10	500	Very High
		2	123	7		
		3	92	11		
2	257	1	178	16	800	Very Low
3	204	1	57	6	700	Med
		2	55	7		
		3	57	7		
4	180				800	Very High
5	294	1	40	6	600	High
		2	87	8		
		3	30	6		
		4	43	12		
6	633	1L	30	6	650	Very High
		2R	35	6		
		3L	70	9		
		4R	65	5		
		5R	108	7		
		6L	75	5		
		7R	18	4		
		8R	121	6		
		9R	46	5		
		10L	65	11		
7	757	1L	55	8	650	Very High
		2L	35	3		
		3R	102	6		
		4R	65	7		
		5L	75	11		
		6R	90	6		
		7L	176	7		
		8R	59	8		
		9L	50	8		
		10L	50	5		

<u>Olsson</u>

Field Assessment Data Summary

New	Total Length		Bank Length	Bank Height	Cost Est	
Site #	(yds)	Bank No	(yds)	(ft)	(\$/ft)	Priority
8	457	1R	60	11	650	Med
		2L	46	7		
		3R	73	10		
		4L	61	7		
		5R	45	6		
		6L	35	5		
		7R	79	11		
		8L	58	6		
9	137	1L	79	7	600	Low
		2R	58	6		
10	325	1R	75	8	500	Low
		2R	48	10		
		3L	65	8		
11	91		91	10 in HC pool	350	Very High
12					100	Low (Fencing)
13	210	1	150	2.5		Low-Med
		2	60	3.5		
14					100	Low (Fencing)
15	229	1L	61	5	100	Low (Fencing)
		2R	32	3		
		3L	20	3		
16	127	1L	32	7	550	Low
		2R	51	6		
		3L	29	5		

Estimated sediment load reduction

- Reduced sediment loading is one of the primary benefits of natural channel rehabilitation; so much so, in fact, that even though it was not listed as a project task, estimates of the sediment load reduction that would be provided by implementation of a project at each site were included in the assessment.
- This was accomplished using aerial photography from 2008 and 2015, and two different but similar methods.
- In one method, the product of the field measured bank lengths and heights were multiplied by the average bank erosion distance observed in the aerial imagery.
- In the other method, the bank height measured in the field was multiplied by the area of the bank eroded as observed in the aerial imagery.
- The estimates provided by the two methods are similar.

Task 5: Prioritization of assessed reaches for potential natural rehabilitation

Factors deemed important in prioritizing the sites for natural rehabilitation include:

- The geomorphic priority assigned to the reach.
- The estimated sediment loading reduction provided by implementing a natural rehabilitation project at the site.
- Existing infrastructure at the site.
- The social and political implications of implementing a project at the site.

	Geomorphic	Total Est. Sed.		
Site #	Priority	Load (yds ³ /yr)	Infrastructure	Soc./Pol.
1	Very High	Insignificant	County Rd.	High
2	Very Low	1,040	None	Low
3	Med	410	None	Low
4	Very High	***	None	Very High
5	High	190	LW x-ing	Med
6	Very High	1,620	None	Low
7	Very High	1,400	None	Low
8	Med	580	None	Low
9	Low	240	None	Low
10	Low	370	None	Low
11	Very High	***	None	Low
12	Low (Fencing)	***	None	Low
13	Low-Med	120	None	Low
14	Low (Fencing)	***	None	Low
15	Low (Fencing)	100	None	Low
16	Low	150	None	Low

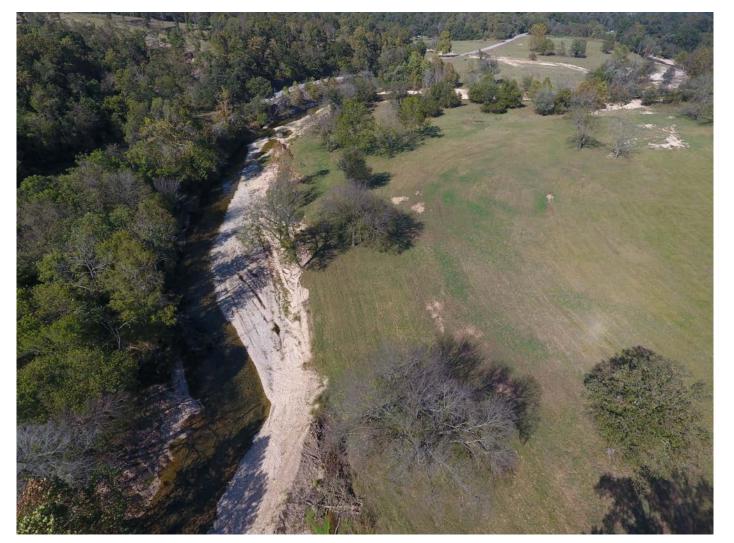
Task 6: Estimated cost of natural rehabilitation of the assessment reaches

- Estimating the cost of implementing a natural rehabilitation project is difficult to do without a design.
- Project engineers independently estimated the cost per linear foot of constructing a project at the site.
- If their initial estimates differed, it was discussed until they were in agreement.

Site #	Total Length (yds)	Cost Est (/ft)		Total Est. Sed. Load (yds³/yr)	Est. Project Cost (\$)	Sed. Reduction Cost Est. (/yds³/yr)
1	498	\$	500	Insignificant	\$747,000	***
2	257	\$	800	1040	\$616,800	\$593
3	204	\$	700	415	\$428,400	\$1,032
4	175	\$	800	***	\$420,000	***
5	294	\$	600	194	\$529,200	\$2,734
6	633	\$	650	1622	\$1,234,350	\$761
7	757	\$	650	1437	\$1,476,150	\$1,028
8	457	\$	650	583	\$891,150	\$1,528
9	137	\$	600	240	\$246,600	\$1,028
10	325	\$	500	373	\$487,500	\$1,307
11	91	\$	350	***	\$95,865	***
12	?	\$	100	***	***	***
13	210	\$	100	116	\$63,000	\$545
14	?	\$	100	***	***	***
15	229	\$	100	101	\$68,700	\$683
16	127	\$	550	153	\$209,550	\$1,366

olsson

Site Prioritization Factors Summary


	Total		Cost	Total Est.		Sed. Reduction		
Site	Length	Geomorphic	Est	Sed. Load	Est. Project	Cost Est.		
#	(yds)	Priority	(/ft)	(yds³/yr)	Cost (\$)	(/yds³/yr)	Infrastructure	Soc./Pol.
1	498	Very High	\$500	Insignificant	\$747,000	***	County Rd.	High
2	257	Very Low	\$800	1,040	\$616,800	\$593	None	Low
3	204	Med	\$700	410	\$428,400	\$1,045	None	Low
4	175	Very High	\$800	***	\$420,000	***	None	Very High
5	294	High	\$600	190	\$529,200	\$2,785	L/W x-ing	Med
6	633	Very High	\$650	1,620	\$1,234,350	\$762	None	Low
7	757	Very High	\$650	1,400	\$1,476,150	\$1,054	None	Low
8	457	Med	\$650	580	\$891,150	\$1,536	None	Low
9	137	Low	\$600	240	\$246,600	\$1,028	None	Low
10	325	Low	\$500	370	\$487,500	\$1,318	None	Low
11	91	Very High	\$350	***	\$95,865	***	None	Low
12	***	Low (Fencing)	\$100	***	***	***	None	Low
13	210	Low-Med	\$100	120	\$63,000	\$525	None	Low
14	***	Low (Fencing)	\$100	***	***	***	None	Low
15	229	Low (Fencing)	\$100	100	\$68,700	\$687	None	Low
16	127	Low	\$550	150	\$209,550	\$1,397	None	Low

Site Prioritization Summary

Site		Estimated
Rating	Site #	Repair Cost
1	4	\$420,000.00
2	6	\$1,234,350.00
3	1	\$747,000.00
4	11	\$95,865.00
5	7	\$1,476,150.00
6	5	\$529,200.00
7	3	\$428,400.00
8	8	\$891,150.00
9	13	\$63,000.00
10	16	\$209,550.00
11	9	\$246,600.00
12	10	\$487,500.00
13	15	\$68,700.00
14	2	\$616,800.00
15	14	***
16	12	***

Questions?

