

USDA-ARS Hydraulic Engineering Research Unit Stillwater, OK

Innovations in Hydraulic Engineering since $19\overline{40}$.

Hydraulic Engineering Research Unit Staff

Dr. Sherry Hunt, Research Leader

Vacant, Research Civil Engineer

Kem Kadavy, Agricultural Engineer

Ron Tejral, Agricultural Engineer

Bob Sappington, Engineering Technician

Tyler Selvey, Engineering Technician

Dr. Abdelfatah Ali, ORISE Post-doc

Spartanburg, South Carolina Outdoor Hydraulic Laboratory

MISSION: Determine the hydraulic characteristics of vegetations used for waterway lining.

MISSION: Determine the hydraulic characteristics of vegetations used for waterway lining.

UNITED STATES DEPARTMENT OF AGRICULTURE

SOIL CONSERVATION SERVICE

HANDBOOK OF CHANNEL DESIGN FOR SOIL AND WATER CONSERVATION

Prepared By

Stillwater Outdoor Hydraulic Laboratory

Stillwater, Oklahoma

In cooperation with the Oklahoma Agricultural Experiment Station

SCS-TP-61
Washington, D. C.
March 1947
Revised June 1954
Converted to metric system August 1966

✓ SCS TP-61 Handbook of Channel Design

- ✓ SCS TP-61 Handbook of Channel Design
- ✓ ARS AH-667 Stability Design of Grass-Lined Open Channels

- ✓ SCS TP-61 Handbook of Channel Design
- ✓ ARS AH-667 Stability Design of Grass-Lined Open Channels
- ✓ NRCS NEH, Part 650, EFH Ch 7 Grassed Waterways.
- ✓ NRCS NEH, Part 654, SRD Ch 8 Threshold Channel Des.
- ✓ NRCS EFT v 1.1.2 Waterway Development Tool v 2.0.0.3 released
- ✓ NRCS-ARS SITES Model v 2005.1.3
- U.S. Army Corps of Engineers SITES SSEA

- ✓ ASABE EP464.1 Grassed Waterway for Runoff Control
- ✓ ASABE EP492.1 Diversions
- ✓ NRCS Conservation Practice Standards

412 Grassed Waterway

468 Lined Waterway or Outlet

600 Terrace

378 Pond

402 Dams

- ✓ SCS TP-61 Handbook of Channel Design
- ✓ ARS AH-667 Stability Design of Grass-Lined Open Channels
- ✓ NRCS NEH, Part 650, EFH Ch 7 Grassed Waterways.
- ✓ NRCS NEH, Part 654, SRD Ch 8 Threshold Channel Des.
- ✓ NRCS EFT v 1.1.2 Waterway Development Tool v 2.0.0.3 released
- ✓ NRCS-ARS SITES Model v 2005.1.3
- ✓ U.S. Army Corps of Engineers SITES SSEA
- ✓ NRCS-ARS WINDAM

 Breach Model

 (Beta Test Version)

MISSION: Develop criteria for the analysis and design of conservation structures and channels for the conveyance, storage, and measurement of runoff waters.

MISSION: Expanded to include Hydraulic Structures.

✓ NRCS NEH, Part 654,SRD TS Part 14Stone Sizing Criteria

MISSION: Expanded to include Hydraulic Structures.

e TS14C-7	Rock chute:	spreadsheet		
		Rock Chute	Design Data	
(Versio	n 4.01 - 04/23/0		ck Chutes by Robinson, Ric	e. Kadavv. ASAE, 1998)
	Spillway protec			ty: Woodbury
Designer:	Jim Villa		Checked	by:
	3/30/2006		Da	te:
Channel Geo	metry et Channel		Chute	Outlet Channel
Bw -	20.0 ft.	Bw	= 20.0 ft.	Bw = 40.0 ft.
Side slopes = n-value =		Factor of safety	= 1.20 (F _s) = 4.0 (m;1) → 2.0:1 max	Side slopes = 4.0 (m:1) n-value = 0.045
	0.0060 ft./ft.		= 0.200 ft./ft 2.5:1 max	
Freeboard =	0.5 ft.	Outlet apron depth, d		Base flow = 0.0 cfs
			zation Structure No. 41	
Drainage area =		Rainfall = 0 e-3 is. • 3 utlet = 99.0 ft. — (H _{drus} =		The total required capacity is routed the chute (principal spillway) or
hute capacity =		Minimum capacity (based		mbination with an auxiliary spillway.
Total capacity =		24-hour storm with a 3 - 5	The state of the s	tailwater (Tw):
		High flow storm through ch	· ·) = Program
		Low flow storm through ch	ulo) = Program
e and Cross S	Section (Outpu	it)	Notes:	
h _w =	0.38 ft. (0.18 ft.	J	The second secon	iven as High Flow (Low Flow) values.
H _{pe} =	2.67 ft.	h _w = 0.71 ft. (0.3)		depth plus <u>d</u> must be at or above the
Grade Line	ļ	H _{ss} = 2.51 ft.		jump height for the chute to function.
7	t /	0.715v.		epth occurs 2y _c - 4y _c upstream of crest. 8 az. non-woven geolexilie under rock.
H _p -	2.3 ft.		(0.52 ft.)	
Inlet Channel	(0.93 ft.) y _c =	1.8 ft. (0.72 ft.)	z ₁ = 1.07 ft.	Hydraulic Jump
Slope = 0.00	ERAT HOUSE	Inlet Apron	(0.44 ft.)	Height, z ₂ = 2.76 ft. (1.09 ft.)
- 2.34 fL	10y,	= 18 R	. 1	Tw+d = 3.04 ft Tw o.k.
(1.03 ft.)		1,1689	H _{osp} = 5 ft	(1.86 ft.) - Two.k.
Velocity _{eact} -	4 70 for	0(D ₅₀) = 45 ft.	9	2.04 ft. (0.86 ft.) Outlet
	at normal depti	h	200 Con	2.5 Channel
When the norm	nal depth (y _e) in the	8 oz. Min. Geolexilie	5 CHOuflet Apr	Slope = 0.006 n.m.
		ie., the weir capacity is less	20 ft.	d = 1 ft. (1 ft. minimum
		w or ponding will occur. Thi		
ces velocity and	prevents erosion	upstream of the inlet apron.	Chule Bedding	Velocity _{untet} = 3.37 fps at normal depth
		Profile Along Co	enterline of Chute	to look and any and
- Audiary Spilly	KOV		q. = 13.65 cfs	Fquivalent unit discharge
,, .,	- Freeboard - (0.5 ft.	F ₈ = 1.20	Factor of safety (multiplier)
	-	Berm	Z ₄ = 1.07 ft.	Normal depth in chute
	7	8 oz. Min. Geolextile	n-value = 0.054	Manning's roughness coefficient
188	н,*	40%		09 lbs 50% round / 50% angular)
1 _ 6	the same	Rock Chule Bedding	$2(D_{50})(F_s) = 32.4 in.$ Tw + d = 3.04 ft.	Rock chute thickness Tailwater above outlet apron
L along chule	20 ft	Rock thickness = 32.4 in.	Z ₂ = 2.76 ft.	Hydraulic jump height
t, along chule at less than z ₂ .	(Bw)		*** The outlet will	function adequately
Tv	pical Cross S	Section	High Flow S	Storm Information
		(210	-VI-NEH, August 2007)	

- ✓ NRCS NEH, Part 654,SRD TS Part 14Stone Sizing Criteria
- ✓ NRCS NEH, Part 654,
 SRD TS Part 14
 Grade Stabilization Tech.
- ✓ Supplemental Technology to TR-59 Hydraulic Design of Rip-Rap Gradient Control Structures

MISSION: Expanded to include Hydraulic Structures.

✓NRCS Conservation PracticeStandards410 Grade Stabilization Structure

- ✓ NRCS NEH, Part 654,
 SRD TS Part 14
 Stone Sizing Criteria
- ✓ NRCS NEH, Part 654,
 SRD TS Part 14
 Grade Stabilization Tech.
- ✓ Supplemental Technology to TR-59 Hydraulic Design of Rip-Rap Gradient Control Structures
- ✓ ARS Specific Model
 Study NRCS Riffle
 Pool Rock Chute
 Application Sugar Creek, OK
- ✓ NRCS-ARS WINDAM Breach Model (Beta Test Version)

MISSION: Expanded to include Hydraulic Structures.

Flooding across the Midwest

Auxiliary Spillway

✓ TR-03 Hood Inlets for culvert spillways

- ✓ TR-70 Hydraulic proportioning of two-way covered baffle inlet riser.
- ✓ TR-29 Hydraulics of two-way covered risers.

- ✓ NEH Part 628, Ch 50 Earth Spillway Design
- ✓ NEH Part 628, Ch 51 Earth Spillway Erosion Model

- ✓ NEH Part 628, Ch 50 Earth Spillway Design
- ✓ NEH Part 628, Ch 51 Earth Spillway Erosion Model
- ✓ NEH Part 628, Ch 52
 Field Procedures
 Guide for the
 Headcut
 Erodibility Index

- ✓ NEH Part 628, Ch 50 Earth Spillway Design
- ✓ NEH Part 628, Ch 51 Earth Spillway Erosion Model
- ✓ NEH Part 628, Ch 52
 Field Procedures
 Guide for the
 Headcut
 Erodibility Index
- ✓ TR-60 Earth Dams & Reservoirs
- ✓ NRCS-ARS SITES Model v 2005.1.3
- U.S. Army Corps of Engineers SITES SSEA

JET Erodibility Device and Methodology

- ✓ ASTM Standard Field and Laboratory Erodibility Measurement Method
- ✓ NRCS-ARS SITES Model v 2005.1.3
- ✓ NRCS-ARS WINDAM Breach Model (Beta Test Version)
- ✓ ARS <u>B</u>ank <u>S</u>tability and <u>T</u>oe <u>E</u>rosion <u>M</u>odel (BSTEM)

Users of the JET Device and Methodology

- ✓ U.S. Bureau of Reclamation
- ✓ U.S. Army Corp of Engineers
- ✓ Other ARS Scientists
- ✓ Academic Institutions
- ✓ Private Consultants
- ✓ International Scientific Community

JET Erodibility Device

The USDA Small Watershed Program
Historic Landmark of Agricultural Engineering
Dedicated by American Society of
Agricultural and Biological Engineers in 2011

Challenges:

 Competition for food, fiber and water

- Urbanization
- Climate Change
- Aging infrastructure with structural deterioration and/or sedimentation

Challenges: Extremes Weather Events Become More Extreme

2019 Headline News Examples Flood Impact on Cattle – **Nebraska Cow/Calf Produce Losses – Progressive Farmer Midwest Flooding Threatens** Water Safety in 1 Million Wells - CNN News Nebraska Faces \$1.3 Billion in Flood Losses – NPR Flooding Breaches Dam in **Nebraska – The Weather Channel**

Alternative Spillway Designs and Overtopping Protection Systems

- ✓ Site-specific Stepped Chute Studies
 - ✓ Texas
 - ✓ Virginia
 - ✓ North Carolina
 - ✓ Georgia
 - ✓ North Dakota

Impact of Site-specific Stepped Chute Studies:

√NRCS

✓ Private Engineering

√ Forest Service

- ✓ NRCS NEH Chapter in development
- ✓ U.S. Corps of
 Engineers EM 1110 2-1603 Hydraulic
 Design of Spillways (in press)

Generalized RCC Stepped Spillway Research

- ✓ NRCS NEH Chapter in development
- ✓ U.S. Corps of Engineers – EM 1110-2-1603 Hydraulic Design of Spillways (in press)
- ✓ U.S. Corps of
 Engineers EM 11102-1602 Hydraulic
 Design of Reservoir
 Outlet Works (*updating*)

Generalized RCC Stepped Spillway Research

- ✓ NRCS NEH Chapter in development
- ✓ U.S. Corps of
 Engineers EM 1110 2-1603 Hydraulic
 Design of Spillways (in press)
- ✓ U.S. Corps of
 Engineers EM 1110 2-1602 Hydraulic
 Design of Reservoir
 Outlet Works (updating)

Generalized RCC Stepped Spillway Research

Embankment Breach Research

Embankment Breach Research

Embankment Breach Research

Embankment Breach Research

Embankment Breach Research

Embankment Breach Research

Embankment Breach Research

Impact

- Prioritization of Rehabilitation
- Improvement of Flood Warning Systems
- Development of Emergency Action Plans
- Zoning Regulations

USDA Small Watershed Program

for generations to come.

Leading America towards a better future through agricultural research and information.

USDA is an equal opportunity provider and employer.