Validation of a Rapid Assessment Method for Determining the Condition of Floodplain Wetlands in Oklahoma

Anthony Thornton¹, Craig Davis¹, Daniel Dvorett², Sarah Gallaway², Brooks Tramell²

¹ Oklahoma State University

² Oklahoma Conservation Commission

Background

- An estimated 67% of Oklahoma's wetlands were lost between the 1780s and the 1980s
- More than 185,000 acres lost in US between 2004 and 2009
- 55% of wetlands in the Interior Plains (of which Oklahoma is a part) were in fair or poor condition as of 2011

Wetlands provide important services

HabitatFlood mitigationFiltrationAquifer rechargeDegradation reduces a wetlands ability to provide services

Monitoring and Assessment

- No formal monitoring and assessment in Oklahoma
- Wetland Program Plan developed in 2013
- OKRAM
- Floodplain Wetlands

Floodplain Wetlands

OKRAM

Stressor based assessment method

Hydrology – Hydroperiod, Water Source, Hydrologic Connectivity

Water Quality – Nutrients, Sediments, Contaminants, Buffer Filter

Biota – Vegetation, Habitat Connectivity

Objectives

- Calibrate OKRAM for floodplain wetlands
 - 30 sites on two river channels
 - Landscape scale GIS data
 - intensive vegetation and soil survey
- Validate OKRAM
 - statewide
 - 50-60 sites
 - intensive vegetation and soil survey

Study Area

Deep Fork of the Canadian River and the North Canadian River

Study Area

North Canadian River

Deep Fork of the Canadian River

Calibration

- Use a landscape development intensity index (LDI) to assign a rough condition score to each watershed within the two river systems
- Choose wetlands from each end of the condition spectrum
- Determine if the OKRAM is sufficiently capturing the difference between conditional extremes
- Conduct intensive biotic survey and compare to RAM scores

Landscape Development Intensity Index

Land Cover Type	Coef
Sandy Prairie/Pasture	0.4
Urban – High Intensity	0.0
Pasture/Prairie	0.8
Eastern Redcedar Woodland and Shrubland	0.4
Bottomland Hardwood Forest	1.0
Open Water	1.0

LDIs are developed by assigning coefficient values to landcover types and calculating a condition score based on the percentage of each type in the assessed area.

Intensive biotic survey

• Intensive site assessment consisting of vegetation and soil sampling

- NWCA vegetation protocol
- Soil analysis for organic matter, nutrients, and texture

NWCA vegetation protocol

Relationship between OKRAM and biotic assessment scores

Example from OKRAM validation in depressional wetlands

Future Steps

Expected results

• Some metrics will need to be altered or removed to accurately reflect a wetlands condition score

Future Steps

Expected results

 LDI, OKRAM, and vegetation scores for each wetland should a compare in severity

Future Steps

- Validation of OKRAM on 50 to 60 floodplain wetlands statewide.
- Assessments independently carried out by at least two technicians to verify repeatability

Acknowledgements

Bollenbach Endowed Chair in Wildlife Management

Technicians: J.D. McCoy Will Hurney

OSU Department of Natural Resource Ecology & Management

Funded by USEPA 104(b)(3) Wetlands Development Grant

Questions?