

A REVIEW OF the LAKE URMIA RESTORATION PROPOSALS

Raana Koushki & Ali Mirchi

Department of Biosystems and Agricultural Engineering Oklahoma State University

2019 OCLWA Conference, April 3rd, Stillwater, OK

Introduction

6 Nov 2012 climatechange.ir A Shallow, High Elevation Lake. ➢ Urmia Lake Basin Area: about 52000 Km² >Lake Volume: 24000 MCM **>Lake Area: About 5300 km²** >Lake Depth: About 4.5 m ≻Normal TDS: About 240 gram/lit **Present TDS:** More than 400 gram/lit ✓ National Park (since 1971)

✓ Ramsar Site (since 1975)

✓ UNESCO Biosphere Reserve (since 1976)

2/22

Variation of the Lake's Surface (1984-2011)

Lake Urmia Water Level Changes:

Historical Perspective

Max Level : 1995 -----1278.40 (m)

Variation of the Lake Water Level

(Apr 2009 to May 2018)

Year

Parameters	June 08			Variation According to		
	Water Year		50-year	Last Water	Long Term	
	2016-17	2017-18	Average	Year	Average	
Water Level (m)	1270.86	1270.84	1274.67	-0.02	-3.83	
Surface Area (Km^2)	2414.22	2391.33	4526.7	-22.89	-2135.37	
Volume of the Water (MCM)	2.28	2.23	16.27	-0.05	-14.04	5

Population Distribution in the Basin

Variation of Precipitation

- Period of Record: 65 years
- Decreasing precipitation period: 20 years

Variation of Renewable Water

- Renewable water resources potential of the basin has been evaluated using the precipitation and temperature data of the basin.
- During stable period (1951-52 to 1994-95): **8876** MCM
- During the last 20 years: **7136** MCM
- Average of decreased renewable water resources potential: 1734 MCM (about 20%)

Variation of Inflow to Lake Urmia

in a 65-Year Period

9/22

Water Consumption

Water Decourses	Water Consumption (MCM)						
water Resources	Domestic	Industry	Agriculture	Sum			
Surface Water	351	25	3088	3464			
Groundwater	180	33	1504	1717			
Sum	531	58	4592	5181			

✓ 66% from Surface Water and 34% From the Groundwater

 ✓ More than 88% of Water Consumption is in the Agricultural Sector

Changes of the Irrigated Lands in the Basin

Over the Past 40 years

Factors Affecting the Shrinkage

- Decrease in precipitation
- Increase in temperature
- Increase in overdraft
- Altered crop pattern

- Poor level of efficiency in water consumption
- Change in land use: Pastures to orchards
- Expansion of irrigated lands
- Construction of hydraulic structures
- Increase in population

Measures to Revive the Lake

✓ Measures:

- Structural
- Nonstructural
- Combined

Target: To approach the ecological water level
Target Year: 2023

Measures to Revive the Lake

Structural

- Water transfer to the islands and littoral wetlands & water body of the lake
- Water transfer to the wet part of the lake

Nonstructural

- No new water consumption and development
- Developing a decision support system (DSS)
- Land cadaster
- Organizing the wells and installing smart metering on pumps
- Creat job opportunities and alternative livelihoods
- Planting halophytes in the dried parts of the Lake
- Temporary restriction of cultivation in exchange for compensation
- Monitoring of implementation of plans

Measures to Revive the Lake

Combination of Structural and Nonstructural Measures

- Reclaimed waste water allocation and transfer to the lake
- Control and reduction of agricultural water use
- Stopping all dam consecution activities
- Inter-basin water transfer projects
- Identification and stabilization of dust storm sources

Quantitative Objectives in the Lake Urmia Restoration Schedule

Year	Level (m)	Area (km²)	Volume (MCM)	Volume (%) to ecologic volume (%)	Area (%) to ecologic area (%)
2014	1270/6	2146	2584	22	50
2018	1272/05	3330	4685	44	75
2019	1272/53	3676	8290	56	85
2020	1272/9	3875	9960	67	89
2021	1273/37	3980	11593	78	93
2022	1273/69	4266	13205	89	98
2023	1274/1	4307	14721	100	100

Predicted Variation of the Lake Urmia Water Level through Restoration Program

Strengths of the Restoration Process

The government's special attention.

- A suitable platform for the interaction of stakeholders and decision-makers
- Concentrating all tasks under the supervision of a designated organization
- Using the country's engineering expertise, universities, research institutes and national information centers.
- Studying relevant global experiences
- Identifying the main water consumer in the basin
- Reaching an agreement on reducing water use in this sector
- Providing a roadmap as an operational program

Weaknesses of the Restoration Process

- Need to strengthen the role of experienced practitioners in the implementation and supervision Lake Urmia restoration
- Uncoordinated bureaucratic procedures within executive organizations:
 - Weakness in the structure and plans of the RBO and IWM
 - Domination of the provincial governors on the actions of the local organizations
- Lack constructive interaction with members of the Parliament representing affected communities
- No specific strategy to use the capacities of cooperative companies, professional societies, and stakeholder participation
- No integrated approach in watershed management and planning
- Lack of attention to the social and economic capital within the basin

Weaknesses of the Restoration Process

- Inadequate attention to livelihoods and alternative employment: Rural economy has always relied on agriculture and no measures have been taken to reduce this dependence.
- Costly plans in the face of national economic hardships
- Focusing on inter-basin water transfer projects as quick fix solutions without a comprehensive analysis and evaluation of alternative solutions
- Lack of transparency and public awareness mechanisms: This has allowed the working group to insist on incoherent policies despite poor outcomes in other parts of the country (e.g., inter-basin water transfer to the central plateau of Iran).
- Lack of enough attention to the past actions to restore the lake
- Failure to provide infrastructural prerequisites for reducing water use in the agricultural sector

Weaknesses of the Restoration Process

- Overlooking opportunities in cropping change and cultivation methods to improve agricultural economics while saving water
- Need to take into account ethnic differences and different levels of development in the basin
- Lack of proper monitoring and tools to allow assessment of actions and executive plans to ensure complete, timely implementation in accordance with planned goals
- Failing to propose a finalized plan on how to implement a variety of the presented research projects

Dried part of the Lake

Thank you!

Raana Koushki (R.Koushki@okstate.edu) Ali Mirchi (Amirchi@okstate.edu)