

Emily Rhodes and Grant Graves, M.S. Oklahoma Water Survey at OU

Background

- 2016 303(d) list assessed 33,016 miles of streams
 - 7,537 miles impaired for enterococcus
 - 2,819 miles impaired for *E. coli*

State of Impairment

- Resources for routine bacteria monitoring are limited.
 - Time and Dollars
- Impaired status unknown for many stream sites
 - Some as far back as 2001!
- Sites are generally only sampled routinely once every 5 years at minimum.
- Increased urbanization, land uses and climate change all factors to consider

Project Objectives

- Fill a need for monitoring pathogenic indicators in Oklahoma
- Evaluate legacy stream reaches for impairment status
- Provide the State with valuable information to assess human health risk and beneficial uses
- Potentially reduce state costs by removal from list
- Emphasis for continued monitoring and education

Primary Body Contact Recreation

- A minimum of **ten (10)** samples is required to make an attainment determination.
- Samples must be taken during the recreation period of May 1 –
 September 30.
- The geometric means will be compared to the appropriate screening value.
 - Escherichia coli (E. coli)
 - Attained if: the *geometric mean* of the samples *does not exceed 126 colonies/100 mL*
 - Not attained if: the *geometric mean* of the samples *exceeds* 126 colonies/100 mL
 - Enterococci
 - Attained if: the geometric mean of the samples does not exceed 33 colonies/100 mL²
 - Not attained if: the geometric mean of the samples exceeds 33 colonies/100 mL

Why Monitor for *E. coli* and Enterococcus

- Pathogenic indicator
- Human health
- Environmental health

E. coli

Enterococcus

OWS 2018 Recreational Season Monitoring

- 23 sites, within the Cimarron, Canadian, and Arkansas basins were monitored during the 2018 recreational season.
- Most sites coincided with the OCC Rotating Basin Monitoring Plan Schedule (Group 3)
- Additional sites were added for the Central/Upper Arkansas Oklahoma Comprehensive Watershed Planning Region (OWRB)

Waterbody	County	Last Sampled
Beaver Creek, West	County	
•	Logan	10/30/2001
Buggy Creek	Canadian	9/27/2011
Butler Creek	Muskogee	5/4/2010
Canadian River, Deep Fork	Oklahoma	5/5/2010
Coody Creek	Muskogee	5/5/2010
Cottonwood Creek at Academy Rd	Logan	9/29/2008
Cottonwood Creek at HWY 74	Logan	10/31/2001
Crooked Oak Creek	Oklahoma	10/31/2001
Crutcho Creek	Oklahoma	10/31/2001
Deer Creek	Logan	10/31/2001
Dugout Creek	Payne	9/29/2008
Elm Creek, West	Cleveland	9/22/2008
Gentry Creek	McIntosh	6/2/2008
Kingfisher Creek	Kingfisher	9/30/2008
Little Deep Fork Creek	Creek	3/26/2001
Little River	Cleveland	9/22/2008
Rock Creek	Cleveland	9/22/2008
Shell Creek	Canadian	10/31/2001
Stillwater Creek	Payne	9/30/2008
Trail Creek	Kingfisher	10/30/2001
Turkey Creek	Kingfisher	9/30/2008
Uncle Johns Creek	Kingfisher	9/30/2008
Walnut Creek, North Fork	McClain	11/5/2001

OKH₂D

Site Overview

Monitoring

Bacteria samples were collected using methods developed from USGS National Field Manual for the Collection of Water-Quality Data protocol for the collection of biological indicators

Monitoring

- Stream parameters such as turbidity, dissolved oxygen, pH, and conductivity were measured.
- Ambient conditions (24-h precip and temperature)
- Visual observations

Bacteria Analysis

Prepared using Idexx Colilert, Enterolert and Quanti-Tray products using Standard Methods 9223B and 9230D for *E. coli* and enterococcus respectively.

Bacteria Analysis

A most probable number (MPN) is calculated based on the number of large and small wells that:

Fluoresce under a long-wave ultraviolet light for both E.
 coli and Enterococcus

Total QA/QC	Total Samples	Total Percent QA/QC
81	260	31%

QA/QC Type per Total QA/QC				
Field	Field	Laboratory	Laboratory	Positive/Negative
Replicate	Blank	Duplicate	Blank	Control
37%	31%	22%	2%	9%

QA/QC Type				
Field	Field	Laboratory	Laboratory	Positive/Negative
Duplicate	Blank	Duplicate	Blank	Control
30	25	18	2	7

Field and Laboratory Quality Control Statistics		
E. coli Duplicate Mean Relative Percent Difference	17%	
Enterococcus Duplicate Mean Relative Percent	12%	
Difference		
Percentage of Field/Lab Blanks with positive results	0%	

Enterococcus Positive and Negative Controls			
Enterococcus QA	MPN per 100 mL	Target MPN per 100	
		mL	
Enterococcus 1	117.8	127	
Enterococcus 2	125	127	
Enterococcus 3	191.8	127	
Streptococcus bovis	<1.0	<1.0	
Escherichia coli	<1.0	<1.0	

E. coli Positive and Negative Controls			
E. coli QA	MPN per 100 mL	Target MPN per 100	
		mL	
E. coli 2	93-3	106	
E. coli 3	108.6	106	
Klebsiella variicola	<1.0	<1.0	
Pseudomonas	<1.0	<1.0	
aeruginosa			

- QAQC Protocol References
 - USGS Microbiology Program
 - **ODEQ** Requirements
 - SM For Examination of W and WW

Results

- Total of 230 Field Samples Collected
- 303(d) determination from a geometric mean of 10 samples

Geometric Mean Summary

E. coli	Enterococcus
(CFU/100mL)	(CFU/100mL)
22	902
36	221
27	219
77	169
36	307
82	770
191	770
257	862
155	1230
102	966
46	132
84	776
268	327
98	199
140	374
108	666
117	846
129	2310
37	412
36	534
110	385
127	147
98	489
	22 36 27 77 36 82 191 257 155 102 46 84 268 98 140 108 117 129 37 36 110 127

Results Highlights

- E. coli
 - 16 of the 23 streams sampled are eligible for delisting
 - 151 of the 230 individual samples were ≤ 126 CFU/100mL
- Enterococcus
 - **0** of the **23** streams sampled are eligible for delisting
 - Only 7 of the 230 individual samples were ≤ 33 CFU/100mL

What can precipitation tell us?

- Precipitation based on 24-h rainfall from nearest Mesonet sites
- Simple linear regression indicates that rainfall is significant (p < 0.0001, n = 230) for all samples collected for $E.\ coli$ and enterococcus

More About Precipitation

- Antecedent dry period days was not statistically significant for a subset of 3 sites (n=30, p=0.05).
 - Precipitation was significant (p < 0.005).
- Precipitation might be a predictor for bacteria concentrations
- Further evaluation needed to determine correlations and predictions based on precipitation events and bacteria concentrations

Discussion

- Results suggest re-evaluating the stream reaches
 - Temporal and spatial considerations
 - Unknowns- Land use? BMPs? Sources? Indicators? Climate? Seasonality?
- How can we effectively monitor watersheds?
 - Must monitor more regularly to keep up with changes in stream dynamics, climate conditions and anthropogenic influences
 - Important to collect additional data and information
 - Evaluate ancillary data for pathogen prediction

Potential Economic Impact

- Estimated \$73M per year as remediation cost avoidance if all 5,800 miles of *E. coli* and enterococcus impaired streams are removed
 - Assuming the average cost of monitoring a stream reach is \$2.36 per foot per year
- Estimated \$5.5M per year in recreational value if all 5,800 miles of *E. coli* and enterococcus impaired streams are removed
 - \$770 per mile in recreational value
- If all 16 sites that attained *E. coli* determination were removed, approximately \$3.7M in remediation cost avoided

Values used to calculate economic impact from Sanders, L.D., R.G. Walsh, and J.R. McKean, 1991 and USEPA, 2018

Looking Forward

- Evaluate streams for de-listing
- Increase monitoring efforts
- Research effective methods
 - Source Tracking
 - Indicator Species
 - Spatial and Temporal Factors
 - Predictions and Models
- Education!

Upcoming Monitoring

Legend

REGION

- Following the rotating basin schedule`
 - Southwest region is next
- Washita and Upper Red River
- Expected future collaboration with ODEQ/EPA through the TMDL Program

References

- Baird, Rodger, et al., 2017. Standard Methods for the Analysis of Water and Wastewater (23rd ed.) Section 9223B and 9230D: Washington, D.C. American Public Health Association, American Public Health Association, American Water Works Association, and Water Pollution Control Federation
- Castro, A.J., Vaughn, C.C., and others, 2016. Willingness to Pay for Ecosystem Services among Stakeholder Groups in a South-Central U.S. Watershed with Regional Conflict. Journal of Water Resources Planning Management. 2016, 142(9). http://carynvaughn.com/wp-content/uploads/2016/12/CastroetalJWRPR.2016.pdf
- Sanders, L.D., R.G. Walsh, and J.R. McKean, 1991. Comparable Estimates of the Recreational Value of Rivers. Water Resources Research, Vol. 27, No. 7, pp. 1387-1394. https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/91WR00686
- Siyoum, A. and T. Boyer, 2012. Economic Valuation of Ecosystem Services in Northeastern Oklahoma.
- USEPA, 2018. Success Stories about Restoring Water Bodies Impaired by Nonpoint Source Pollution. Website: https://www.epa.gov/nps/success-stories-about-restoring-water-bodies-impaired-nonpoint-source-pollution
- USGS Ohio Microbiology Program, 2017. Quality Assurance/Quality Control Manual: Ohio Water Microbiology Laboratory. Website: https://www.usgs.gov/centers/oki-water/science/ohio-microbiology-program-qaqc?qt-science_center_objects

Acknowledgements

- This project was completed with the help of many OU students and Oklahoma Water Survey student assistants and staff. Thank you for your hard work!
- OWRB, OCC, and ODEQ for planning assistance and GIS data.

