Perspectives on Low Impact Development (LID) Innovations at Multiple Scales: Oklahoma and Beyond

Jason R. Vogel, Ph.D., P.E.

Director, Oklahoma Water Survey Associate Professor, Civil Engineering & Environmental Science University of Oklahoma

OKLAHOMA WATER SURVEY

Reid Coffman, Ph.D.

Director, Novel Ecology Design Lab Associate Professor, Architecture & Environmental Design Kent State University

"...covering a ground plot with buildings and pavements, which carry off most of the rain and prevent its soaking into the Earth and renewing and purifying the springs ... the water of wells must gradually grow worse, and in time be unfit for use as I find has happened in all old cities."

Benjamin Franklin, 1789

Painting by Michael J Deas

LID – An Engineer's Perspective

LID – A Landscape Architect's Perspective

- Water creates place.
- Enables the co-benefits of water in urban ecosystems services.
- Framework of innovation. Corner, 1997

LID Continuum of Contributors

LID Innovations – Oklahoma and Beyond

LID Innovations: the Individual Practice Scale

First Flush Diverter Sizing

Objective: Investigate sizing of first flush diverters for rainwater harvesting.

- Background:
 - Majority of a rooftop's dust and debris is believed to be washed away during the "first flush"
 - Yaziz et al. (1989): 1.3 gallons/194 ft² galvanizediron and concrete tile roofs
 - Martinson and Thomas (2005): Each mm of diverted rainwater halves contamination
 - Texas Manual on Rainwater Harvesting (2005): 1 – 2 gallons/100ft² of catchment area

Yet to be a universal consensus on what exactly constitutes a first flush

First Flush Diverter Sizing

TWDB Recommend 0.41 – 0.82 mm diversion

Percent mass Removals	Asphalt Shingle (n = 93) Diversions (mm)	Diversions (mm)	Diversions (mm)	Diversions (mm)
TSS	92% CL	95% CL	93% CL	83% CL
50%	3.0	4.6	1.0	1.1
75%	7.3	6.6	4.8	1.6
90%	10	12	8.3	2.1
95%	12	13	10	2.4
Commonly Detected PAHs	90% CL	94% CL	90% CL	83% CL
50%	2.3	0.95	0.67	0.52
75%	6.1	2.4	1.0	0.89
90%	12	6.6	1.2	1.2
95%	15	8.8	1.9	1.3
Carcinogenic PAHs	90% CL	94% CL	90% CL	83% CL
50%	2.4	0.92	0.63	0.52
75%	5.9	1.5	0.95	0.88
90%	8.0	2.3	1.1	1.2
95%	8.7	2.7	1.2	1.3
Fluoranthene	90% CL	93% CL ***	90% CL	67% CL *
50%	4.7	1.0	0.71	0.20
75%	12	1.6	1.1	0.30
90%	16	6.0	1.7	0.36
95%	18	6.3	2.0	0.38
Benzo(a)pyrene	90% CL	94% CL	0.43% CL ^a	74% CL **
50%	2.7	0.78	0.60	0.42
75%	5.6	1.4	0.90	0.60
90%	8.1	2.0	1.1	0.72
95%	8.7	2.2	1.1	0.76

Upper Confidence Limits based on α = 0.2

*n = 5; **n = 6; ***n = 27; *All samples had same diversions for respective mass removal rate

Fly Ash for Enhanced Phosphorus Removal in Bioretention Cells

- Find an inexpensive filter media with high P sorption.
 - Lab screening
 - 1-D modeling
- Construct the Grove BRC
 - Standardize design and document construction
 - Quantify filter media during construction
- Perform detailed 3-D modeling of "As-Built"
- Sample filter media and water to evaluate BRC performance after operating for seven years.

Sividual

Estimation of Load Reduction

Regressions on the measured influent and effluent concentrations and flow, as a function precipitation, were used to estimate the total mass removal for 2015, using the full year rainfall.

Cell	Nitrogen (lb/yr)	P (lb/yr)	Sediment (ton/yr)
Elm Creek Plaza	2.02	0.38	0.15
Grove High School	0.80	0.32	0.38

Elm Creek Plaza BRC

Sividual

Other work on these cells includes

- Construction costs
- Construction standards
- Maintenance issues
- Planting
- Plant survival

- Initial water quality
- Initial hydraulics
- Current hydraulics
- Heavy metal removal
- Bacteria removal

Next Steps

- Investigating aggregated fly ash as an underdrain insert for P and heavy metal removal
- Exploring other additives

Constructed Wetlands for Treating Nursery Runoff

Cedar Valley Nursery Ada, OK

Precure

cedar ... valley

dividual

Constructed Wetlands for Treating Nursery Runoff

öwidual,

Non-pesticide Analytes in a Subsurface-flow Constructed Wetland

* – Statistically significant with 95% confidence

Precure.

cedar ... vallev

Pesticide Mass Reduction

(compounds present for >50% of events)

Compounds	P-value	Paired Samples	Mass Reduction
Chlorothalonil	0.009*	9	92%
Bifenthrin	0.004*	11	92%
Chlorpyrifos	0.036*	6	99%
Dimethanamid	0.009*	9	97%
Indaziflam	0.035*	7	86%
Isoxaben	0.021*	8	88%
Myclobutanil	0.004*	11	92%
Oxadiazon	0.004*	11	89%
Oxyfluorfen	0.295	6	74%
Pendimethalin	0.006*	10	79%
Propiconazole	0.004*	11	88%
			JUNTED STATES LICDA

Precure

cedar, Vallev

Sividual Pro-

Modeling Structured Gravel Parking

Objective: Determine the appropriate initial abstraction (Ia) and curve number (CN) to use for designing structured gravel parking lots.

Hypothesis: The initial abstraction will be a function of the depth and porosity of the gravel, and the curve number will match that of the underlying soil

Curve Number Calculations

$$Q = \frac{(P - I_a)^2}{P - I_a + S} \qquad Q = \frac{(P - 0.2S)^2}{P + 0.8S}$$
$$I_a = 0.2S \qquad CN = \frac{1000}{10 + S}$$

Q = Runoff Depth (inches) P = Rainfall Depth (inches) S = Potential Maximum Retention I_a = Initial Abstraction CN = Curve Number Relationship between Initial Abstraction (Ia) and Potential Maximum Retention (S)

Modeling Structured Gravel Parking

Issue: Is 0.2S the appropriate estimation for the Ia for gravel parking lots, when it was actually developed for soil?

$$Q = \frac{(P - 0.2S)^2}{P + 0.8S}$$

öwidual,

Long-term Clogging and Deep Cleaning of Pervious Concrete

Long-term Clogging

Strongly
 Correlated to
 bulk density
 when installed

Deep Cleaning

1. Dry vacuum

2. Wet vacuum

3 & 4. Vacuum sweeper (wet and dry)

5. Pressure wash and vacuum combination

% particles collected in wet condition

% particles collected in dry condition

Leaching from Compost Filter Socks

Objective: Determine the leaching potential of compost filter socks based on the contaminant concentration of incoming runoff.

Hypothesis: Leaching of contaminants(specifically P) will be correlated to influentP and sediment.

P Leaching = Influent P & Influent Sediment

Methods

- Amended ASTM method for testing silt fences
- Testing a factorial design of sediment and nutrients
- Completed testing on socks from Minnick Materials/Fertile Ground
- Plan to test from City of Midwest City.

Preliminary Results

- Outflow ortho-P =
 0.279 + 0.812(Inflow P)
 0.018(Inflow sed)
 - All p-values <0.01
 - R-squared = 0.96
 - All values are mg/L

dividual ,

Floating Wetland Breakwaters

Objective: Design, test, install, and monitor a Floating Wetland Breakwater optimized for wave reduction to reduce shoreline erosion

Sividual

Green roof

Reid Coffman MLA PhD

Assistant Professor of Landscape Architecture, University of Oklahoma

Petra Klein, PhD

Associate Professor of Meteorology, University of Oklahoma

Lee Fithian, LEED AP

Assistant Professor of Architecture, University of Oklahoma

Jason Vogel, PhD

Assistant Professor of Biosystems and Agricultural Engineering, Oklahoma State University

Fig. 1. Photos of (a) installation, (b) initial setup in May 2010, and (c) plant coverage in Spring 2012.

Klein, P., and Coffman, R., 2015. Establishment and Performance of an Experimental Green Roof under Extreme Climatic Conditions. *Science of the Total Environment* Volumes 512–513, 15 April, Pages 82-93,

Material Coverage of the Roof

Fig. 5. Surface coverage of materials showing a decreasing area of bare soils and increasing native grass cover during the initial 26 month establishment period.

Klein, P., and Coffman, R., 2015. Establishment and Performance of an Experimental Green Roof under Extreme Climatic Conditions. *Science of the Total Environment* Volumes 512–513, 15 April, Pages 82-93,

P.M. Klein, R. Coffman / Science of the Total Environment 512-513 (2015) 82-93

HOME / NEWS / ABOUT / STUDY OPPORTUNTIES / PUBLICATIONS / CONTACT

www.NEDlab.org

Windual Practices

KENT STATE.

udigitalhumanities.org

Materials 2016, 9, 611

Beneficial Dredge Re-Use

STATE.

Beneficial Use of River Dredge

25-Jun-15 019467 WD14.3mm 15.0kV x2.5k 20um

(c) S2_5%_1100
Greater Hydrologic Retention

sudigitalhumanities.or

37

Growing Rare Plants

KENT STATE.

sudigitalhumanities.or

Moos Lake Water Plant 1914 Zurich, Switzerland

Co-Benefit Biodiversity Roofs

- 5 year agreement
- Design speculative habitat roofs and other forms of living architecture based on bedrock remnant prairies in NE Ohio.

Living Architecture

40

udigitalhumanities.or

R.Coffman

The Future of LID Innovation on Individual Practices

Engineering

- Amendments
- Investigating the role of plants
- Greenroof plants for Oklahoma
- Designing for maintenance
- Optimizing underdrain design for water quality
- Optimizing co-benefits

Landscape Architecture

- Ecologically productive buildings
- Regionally distinctive site practices
- Plant selection/performance

owidual P

LID Innovations: the Neighborhood Scale

Deerfield Estates Neighborhood Retrofit

dividual

'Forest Brook' Concept

- Neighborhood Suidual Practices
- This concept provides the personal feature of a stone stream channel meandering within a forested garden setting.
- 360 ft² rain garden with no underdrain in residential back yard with dry creek bed channel to reduce erosion on higher slope; Cost = \$8K

'Forest Brook' After Construction

dividua,

'Forest Brook' the next year

Biofiltration Vane

Bioretention

Grass swale

Cross vane

ind;

Retention, infiltration, and treatment Handle higher flow velocities

Natural grade control structure

Biofiltration vane

- Retention/infiltration
- Treatment
- Stormwater drainage

Biofiltration Vane

Sinidual

Biofiltration Vane

'Green Swing' concept

'Green Swing' construction

dividual Stridual

• Golf green look and function

'Green Swing' a year later

- Reduction of:
 - Bacteria
 - Phosphorus
 - Sediment

TRAILWOODS Greenstreet

Neighborhood Bioretention Project

Multiple Benefits

Siniduar

ces

Lawn Rain Gardens Mean Difference Std Error Upper 95% Lower 95% -0.1674 Ν Correlation

0.38 t-Ratio -3.37293 0.485 DF -0.105 Prob > |t| 0.03113 Prob > t -0.0426 Prob < t

56 -0.1653

Higher ecological and biological processing that conventional tree lawns (NDVI)

The rain gardens possessed a higher mean NDVI (0.48) when compared to the lawn (0.38), t(55) = 3.38, p < .001) using JMP software

Plant Palette

Prairie

Stonecrop Sedum Sedum acre 'Arabicus'

Dwarf Fountain Grass Pennisetum alopecuroides

Dwarf Japanese Juniper Juniperus procumbens 'Nana'

Wormwood Autumn Artemisia 'Powis Castle' Sage Salvia greggii

Desert Willow Chilopsis linearis

Mexican Primrose Oenothera macrocarpa

Daylily Hemerocallis 'Aztec Gold'

'Broadmore'

Pine

Pinus taeda

Common Redbud Cercis canadensis

Verbena canadensis 'Homestead Purple'

Coneflower Liriope Echinacea purpurea Liriope muscari 'Big Blue'

Betula nigra

Ulmus crassifolia

London Planetree Plantanus x hisanica

The Future of LID Innovation at the Neighborhood Scale

Engineering

- Integrated modeling
- Treatment Trains
- Big Data

Landscape Architecture

- Public Space
- Identity and Purpose
- Aesthetics of Place

divid

LID Innovations: the Municipality/Regional Scale

Cleveland Metroparks Watershed Stewardship Center Roof

Germany – co-benefits for stormwater and energy

T STATE.

пи I A R!Coffman

Extensive Vegetation (Sedums, etc.) Growing Media Filter Fabric Moisture Retention / Drainage Panel Insulation Root Barrier Protection Course Waterproofing Membrane (hot rubberized Substrate (concrete deck depicted)

Cleveland Metroparks Watershed Stewardship Center Roof

Phosphorus Leaving the Roof

Sugano, Jefferson, Kinsman-Costello and Avellaneda, *Evaluation of Bioretention Cell and Green Roof Performance in Parma, Ohio.* Ohio Stormwater Conference. May 2017

osmoco

R.Coffman

Team Tool

Advisory Board

2015-2017: Quarterly mtgs.

1.Keely Davidson-Bennett Chagrin River Watershed 2.Elizabeth Hieser Cuyahoga County Soil and Water 3.Rachel Webb NEORSD 4. Jay Dorsey ODNR 5. Dan Bogoevski OEPA 6.Katherine Holmok Environmental Design Group 7. Rick Espe MKSK 8. Paul Novak US EPA 9. Jonathan Moody US EPA 10.Mark McCabe Graham, Smith and Partners 11. Aaron Jennings Case Western 12.Kelly Turner *Kent State University* 13. Laura Johnson Heidelburg University NCWQR 14. Chris Cheraso Cleveland Metroparks

Forest

Project Signature

Equity

Order

4

Evapotranspiration Vegetative Cover Native speci Climate Wellow

Nutrient Retention

Hydrology Domain

Storage Site and rainfall water storage. Water capture for use by plants, people or animals.

Others terms: event based capture and discharge (i.e. 2 yr storm event), water recycle and reuse.

Infiltration

Water moving into the soil saturating the surface soil for plants and other organisms and groundwater recharge.

Others terms: soil saturation, baseflow, interflow, aquifer recharge

Evapotranspiration "Drying-out" of land, moving liquid water to atmospheric

gas state

Other terms: atmospheric moisture, humidifying

Project Signature

Human Domain

Equity

Accessibility, assembly, social inclusion, and participation with the infrastructure/site

Others terms: democracy, fellowship, inclusion, participation, knowledge, education

Wellness

The positive effects on physiological and psychological improvement to humans.

Others terms: Recreation, activity, stress reduction, restoration therapy, concentration,

Order

A legible landscape for practical purposes and human meaning.

Other terms: legibility, functionalism, visual quality, formal aesthetics

Nutrient and Energy Domain

Climate

Working against the urban heat island to create comfortable environments and conditions habitable by all species.

Others terms: air temperature, urban cooling, solar interception, surface temperature, flux

Green House Gases Regulation of

carbon dioxide, methane and harmful atmospheric gases

Common examples include: carbon, methane,

Nutrient Retention

To regulate the nutrients in the terrestrial water supply.

Others terms: phosphorus reduction, nitrate reduction, trace element management: Fe, PB, TSS, OM, Etc.

Project Signature

Biodiversity Domain

Vegetative Cover The area of trees, shrubs, grasses, legumes,

forbs, and mosses.

Others terms: biomass, canopy cover, harvest

Biodiversity

The variety of life forms including the full range of plant, animal and other species present in an area.

Others terms: species diversity, ecosystem diversity, functional diversity, refuge/nursery

Native Species Use and protection of native plant species to an

area.

Others terms: nativity, local species, regional

Project Signature

City of Tulsa Design Criteria Manual

- For implementation of LID at a widespread scale, practitioners need defined goals to design to.
- Select a design goal, known as the stormwater volume (SWV).
- Specific design goals for each practice.
- Will be use for an incentive program to be designed in the future.
- Maintenance and inspection procedures and specifications are next on the list.

Stormwater Volume Determination

- Percentile Storms for Tulsa
 - 90th Percentile: 1.48 in
 - 85th Percentile: 1.15 in
 - 80th Percentile: 0.98 in

Source: Bixby Mesonet Station

- We chose 1.0 inches of runoff from impervious surfaces as a design goal for the SWV.
 - Approximately 85% storm
 - 50% of total rain captured

Design Criteria Manual Innovations

- Bioretention and Pervious Pavement:
 - Allow for credit for infiltrated volume over the first four (4) hours of the storm
 - Very specific underdrain requirements
- Pervious Pavement: Overdrain required if no underdrain
- Rainwater Harvesting:
 - Orifice outlet to drain stormwater volume over 48 hours
- Downspout Disconnection:
 - Use field data to validate partial credit for downspout disconnection under specific circumstances
- Greenroofs:
 - Blanket 60% credit because volume reduction is not correlated to thickness or other parameters

Optimization LID Using the EPA Stormwater Calculator and Excel Solver

Regression

• EPA Stormwater Calculator output for different percentages of impervious area treated by each singular LID type

Regression (cont.)

20

Runoff Depth for Impervious Area Treated by Different LID Types

40

Percent of Impervious Area Treated

- Disconnection
- Green Roof
- Infiltration Basin
- Rain Gardens(5%)
- Rain Harvest
- Street Planter
- Rain Gardens(10%)
- 100 Permeable Pavement

Ο

Minimization Function

Regional Demonstrations

The Future of LID Innovation at the Municipality/Regional Scale

Engineering

- Watershed-based implementation and modeling
- Integration with TMDL's
- Design optimization for more parameters
- Big data
- Regional demonstrations

Landscape Architecture

Indi

- Park systems
- Resilience Planning
- Co-Benefits/Trade-offs
- Public Investment

LID Innovations: the Big Picture

World Green Roof Market

N M I A F B Z I L Å http://meetingoftheminds.org/building-integrated-vegetation-mitigatingurban-environmental-challenges-with-building-material-technologies-82:

Green Roof Market Growth

In 2016, 4,061,024 s.f. of green roofing installed.

(respondents recorded 889 projects in 40 US states and six Canadian provinces)

10.3% growth rate over 2015

Green Roofs for Healthy Cities (GRHC) is a non-profit

industry association working to promote the green roof and wall industry throughout North America.

<u>Mission</u>

GRHC's mission is to **develop and protect the market** by increasing the awareness of the economic, social, and environmental benefits of green roofs, green walls, and other forms **of living architecture** through education, advocacy, professional development and celebrations of excellence.

<u>Services</u>

Annual Conferences

- CitiesAlive National Conference
- Grey to Green Regional Conference

Local Advocacy Efforts

• Symposia

Resource Generation

• Market Survey

Publications

- Journal of Living Architecture (JLIV)
- Living Architecture Monitor

Journal

SEARCH ARTICLES FROM THE JOURNAL OF LIVING ARCHITECTURE

RESEARCH

ARTICLES SUBMIT ABOUT

Q. Search		
	SEE ALL JLIV ARTICLES	

Living Architecture

LANDSCAPE PERFORMANCE SERIES^{by the} Landscape Architecture Foundation

Case Study Briefs

Fast Fact Library

Benefits Toolkit

Collections

Browse and Search hundreds of Landscape Performance Series Resources > About Landscape Performance Blog Training Guide to Evaluate Performance Resources for Educators Contact

Q

The Landscape Performance Series is the online set of resources to help designers, agencies, and advocates evaluate performance, show value and make the case for sustainable landscape solutions.

Active Living >

Resilience >

Biodiversity >

Gary Comer Youth...

Revitalization >

Social Equity >

Water Management >

landscapeperformance.org

Creating Learning Communities

www.greatplainslid.org

DESIGN COMPETITION

CONTACT PAGE

GREAT PLAINS

LID

Home / Water Environment Research, Volume 87, Number 9

Critical Review of Technical Questions Facing Low Impact Development and Green Infrastructure: A Perspective from the Great Plains

Authors: Vogel, Jason R.; Moore, Trisha L.; Coffman, Reid R.; Rodie, Steven N.; Hutchinson, Stacy L.; McDonough, Kelsey R.; McLemore, Alex J.; McMaine, John T. Source: Water Environment Research, Volume 87, Number 9, September 2015, pp. 849-862(14) Publisher: Water Environment Federation DOI: https://doi.org/10.2175/106143015X14362865226392

National Green Infrastructure Certification Program

Welcome to NGICP, the standard for national certification of green infrastructure (GI)

construction, inspection, and maintenance workers.

See a list of certified individuals

The Future of LID Innovation: the Big Picture

Engineering

- Create regional/national interdisciplinary communities and platforms
- Design and Maintenance Training/Certification
- Integration of Disciplines

Landscape Architecture

- Policy for Green roofs
- Landscape Performance
- Systems Thinking
- Bundling Ecosystem Services

Concluding Remarks

- •Optimizing co-benefits at all scales
- Provides platform for creativity
- Interdisciplinary is the way to go
- •We must work together for solutions

Thanks to our students, partners, and funding agencies who make this work possible.

Low Impact Development Innovations – Oklahoma and Beyond

Jason Vogel

Individual Practices	Neighborhood		
Rainwater Harvesting First Flush Fly Ash Bioretention Pesticides Constructed Wetlands Pervious Concrete Clogging Compost Filter Socks Floating Wetland Wavebreaks	Deerfield Estates Bioretention EPA Stormwater Calculator Optimization		
Municipality/Region	The Big Picture		
COT Design Criteria COT Maintenance and Inspection	Great Plains LID Symposium & Competition Oklahoma Demonstrations/Education NGICP <i>Water Environment Research</i> Lit Reviews		
Reid Coffman			
	NL-1-1-1-1-1		

Individual Practices	Neighborhood
NWC Green Roof	Trailwoods Development
Municipality/Region	The Big Picture
Oklahoma Bioretention Plants OKC Green Roof Symposium	Ecosystem Services Journal of Living Architecture