### Managing Conflicting Water Resource Goals and Uncertainties in a Multi-Reservoir System

### Lin Guo

PhD Candidate School of Industrial and Systems Engineering University of Oklahoma E-mail: <u>lin.guo@ou.edu</u>

Co-Advisors: **Professor Janet K. Allen** School of Industrial and Systems Engineering **Professor Farrokh Mistree** School of Aerospace and Mechanical Engineering

April 4<sup>th</sup>, 2018

The Systems Realization Laboratory @ OU

### Content

- **1** Problem Description
  - 1.1 Dam-Network Planning
  - 1.2 Uncertainty in the Problem
- 2 Frame of Reference and Proposed Method
- 3 Model Formulation
  - 3.1 Formulation of the Model
  - 3.2 Results
- 4 Post-Solution Analysis Exploration of the Solution Space
  - 4.1 Design Preference Exploration
  - 4.2 Sensitive Segments Identification
  - 4.3 Design Improvement
  - 4.4 Design Improvement Validation
- 5 Closure



Network – 38 dams (nodes), streams (arcs), plan the flows to meet requirements

Goals – supplying appropriate amount of water to multiple user-groups (fish, people)

**Decisions** – water flow plans, model improvement

**Uncertainties** – variation in inflows (precipitation, tributary)

**Hypothesis** – by exploring the solution space and improving the model, we can make water flow plans that are relatively insensitive to uncertainties.



# Dam-Network Planning (2/2)

Introduction of the data we use

The structure the network: the *upstream dams* and *downstream dams* of each dam



The physical upper and lower bound of water storage of each reservoir $CM_d \leq S_d^t \leq CF_d$ The upper and lower bound of predicted precipitation and tributary $I_d^t + Pr_d^t$ The target volume of water storage in the reservoirs $ST_d^t$ The target volume of water released to downstream dams of each dam $FT_d^t$ The target volume of water released for municipal and agricultural $AT_d^t$ The evaporation and seepage loss $E_d^t + P_d^t$ 



**Uncertainty in the Problem** 







1 Problem<br/>Description2 Frame of Reference<br/>and Proposed Method3 Model<br/>Formulation4 Post-Solution<br/>Analysis

### Literature Review and Gap Analysis (1/2)

| Methods in<br>                    | Gaps and Limitations                                                                                   | Requirements of filling in the gaps                                                                                             | Proposed Methods and how do they meet the                                                                                                                                                                      |
|-----------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| literature                        |                                                                                                        |                                                                                                                                 | requirements                                                                                                                                                                                                   |
| <b>Deterministic Linear</b>       | Cannot manage nonlinearity,                                                                            | Form the problem more accurately, and                                                                                           | CDSP – use cDSP to formulate a problem                                                                                                                                                                         |
| Programming (LP)                  | nonconvexity, discontinuity,<br>or variations in parameters                                            | capture the nonlinear, nonconvex, and<br>discontinuous feature, and manage the<br>critical variations in parameters             | accurately. The problem can be formulated as a<br>nonlinear problem with continuous, binary and<br>integer variables. Nonconvex problem can be<br>converted into convex problem using the<br>formulation rules |
| Mixed-Integer LP<br>(MILP)        | Computational dense                                                                                    | Approximate the problem to reduce<br>the computational density, while<br>maintain appropriate fidelity                          | ALP – approximate the problem using ALP, through linearizing the nonlinear constraints and goals                                                                                                               |
| Stochastic LP (SLP)               | Have ssumptions of the distribution of stochastic variables may be wrong                               | Manage the parameters with<br>uncertainties without any assumptions<br>of distribution of the parameters                        | ESS – explore the solution space in different design<br>scenarios incorporating uncertainties. Identify a<br>solution space that is relatively insensitive to the<br>uncertainties                             |
| Chance-Constraint<br>LP (CCLP)    | Can decrease frequency of<br>system failure but cannot<br>guarantee severity of each<br>system failure | Decrease the frequency and severity of<br>systems failures by manage the<br>optimality and feasibility<br>simultaneously        | Primal-dual interior method – the optimality and feasibility can be managed simultaneously using the primal-dual interior method.                                                                              |
| Network Flow<br>Programming (NFP) | Cannot evaluate the<br>structure of the network and<br>output improvement<br>suggestion                | Provide water flow plans, by analyzing<br>the plans, we can evaluate the network<br>structure and know how we can<br>improve it | ESS – by exploring the solution space, we can<br>pinpoint the segments in the dam-network that are<br>with limited capacity, or sensitive to uncertainties,<br>and know how we can make a change               |
| Interior Point (IP)               | only works efficient when<br>the problem is a large-scale<br>one, and is hard to be<br>implemented.    | IP can be used as a supplemental<br>algorithm of Simplex algorithm when<br>the problem is a large one                           | Implement IP in solving cDSP when the problem is<br>large. Since in this General Exam, the problem is<br>not a large-scale one, we do not do this right now.<br>It can be in the future work.                  |

1 Problem Description 2 Frame of Reference and Proposed Method 3 Model Formulation 4 Post-Solution Analysis

5 Closure

The Systems Realization Laboratory @ OU

### Literature Review and Gap Analysis (2/2)

| Methods in                  | Gaps and Limitations                                                                                                                                                                                                                            | Requirements of filling in the gaps                                                                                                                                | Proposed Methods and how do they meet the                                                                                                                                                                                                                                                            |
|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| literature                  |                                                                                                                                                                                                                                                 |                                                                                                                                                                    | requirements                                                                                                                                                                                                                                                                                         |
| Nonlinear                   | Not computational efficiency                                                                                                                                                                                                                    | Form the problem accurately with                                                                                                                                   | CDSP and ALP – we can use cDSP to formulate a                                                                                                                                                                                                                                                        |
| Programming (NLP)           | for engineering design<br>purpose in the long-term<br>view                                                                                                                                                                                      | nonlinear feature. Approximate the problem to reduce computational density                                                                                         | problem accurately, and approximate the problem<br>using ALP, through linearizing the nonlinear<br>constraints and goals                                                                                                                                                                             |
| Dynamic<br>Programming (DP) | Curse of dimensionality                                                                                                                                                                                                                         | A method that is not sensitive to<br>dimensionality, which means the<br>increasing in dimension does not<br>significantly increase the<br>computational complexity | Partition the large-scale, high- dimension problem,<br>and solve each sub-problem using cDSP and ALP.<br>Since the problem in this General Exam is not a<br>large-acale, high-dimension one, the partition<br>methods can be further studied in future work to<br>deal with large, complex problems. |
| Goal Programming<br>(GP)    | Preemptive GP: a tiny<br>drawback of a primary goal<br>hinders a huge improvement<br>of a secondary goal.<br>Weight GP: the difficulty in<br>finding the appropriate<br>value and evaluating the<br>rationality of the weights of<br>the goals. | Realize reasonable tradeoffs between<br>fulfillments of different goals.                                                                                           | CDSP and ESS – cDSP is a construct within the<br>framework of GP. In the process of ESS, we do<br>weight sensitivity analysis hence we can get the<br>knowledge of "how much weight should we assign<br>to each goal to get certain achievements of the<br>goals"                                    |

**4 Post-Solution** 

Analysis

1 Problem<br/>Description2 Frame of Reference<br/>and Proposed Method3 Model<br/>FormulationThe Systems Realization Laboratory @ OU

# Proposed Method (1/2)



**1 Design Preferences Exploration 1.1** Identify weight scenarios with tentative meanings and get solutions.

**1.2** Use the weight scenarios and solutions to identify feasible area of weights to satisficing different design preferences.

2 Sensitive Segments Identification 2.1 Identify different scenarios of uncertain parameters and get solutions.

**2.2** Identify active constraints/bounds, and improvable constraints/bounds.

**2.3** Explore the feasibility of Removing the solutions away from boundary by reducing the number of active constraints/bounds, and explore the feasibility of improving the goal achievement by reducing the number of improvable constraints/bounds.

#### **3 Design Improvement**

3.1 Make improvement plans3.1a Improve mathematical model3.1b Physically improve the system

3.2 Improve the mathematical model

**4 Post-Solution** 

Analysis

3.3 Physically improve the system

**2.2a** When the slack/surplus is zero or a tiny value, the constraint/bound is an active constraint/bound

2.2b When the dual price is a relatively large positive value, the constraint/bound is an improvable constraint/ bound

2.3a Restrict the RHS of the active and non-improvable constraints/bounds:
1) Mathematically restrict the RHS
2) Check if it is physically realizable

2.3b Relax the RHS of the active and improvable constraints/bounds:
1) Mathematically relax the RHS
2) Check if it is physically realizable



# Proposed Method (2/2)

a. Identify n scenarios of parameters with uncertainties – ISs.

**b.** Use the latest model to identify the feasible area of weights, and identify m weight scenarios within the feasible area of weights that represent different design preferences – WSs.

c. Plug n ISs and m WSs into the latest model to get x solutions.

**d.** Use the x solutions to identify sensitive segments (active constraints/bounds and improvable constraints/bounds) in the model

if no sensitive segments

Go to i.

#### else

Continue with e.

e. For each active and non-improvable constraint/bound

Explore the feasibility of restricting their RHS

f. For each active and improvable constraint/bound

Explore the feasibility of relaxing their RHS

g. Make model improvement plans based on the conclusion in e and f.

**h.** Improve the model based on the improvement plans in g and go to b.

**i.** The latest model is relatively insensitive to uncertainties and has no potential to achieve a better solution. **End** the iteration.





Adding Buffer to Bring the Solution Away from the Boundary



# Formulation of the Model (1/3)

- Definition and assumptions of the structure of the networ
  - No barriers between dams
  - Infrastructures are in good condition
  - Do not consider cost
- Goals we manage
  - Ecological benefits in the reservoirs
  - Ecological benefits in the streams between reservoirs
  - Societal benefits in the human society of the Red River basin
  - Quantification and evaluation of the achievement of the goals
    - Minimizing the square of the difference between water supply and water demand target

$$\sum (S_d^t - ST_d^t)^2$$
$$\sum (F_d^t - \mathbf{F}T_d^t)^2$$
$$\sum (A_d^t - AT_d^t)^2$$

Actions that the decision maker can take

Water flow plans

Model improvement – Right-hand-side (RHS) values of constraints and bounds





 $AT_d^t$ 

# Formulation of the Model (2/3)

Decision variables and parameters

| Data                                              | Water storage<br>volume in the<br>reservoirs | Water release<br>volume to the<br>downstream<br>reservoirs | Water release<br>volume to people | Precipitation and<br>tributary      | Evaporation and<br>seepage        |
|---------------------------------------------------|----------------------------------------------|------------------------------------------------------------|-----------------------------------|-------------------------------------|-----------------------------------|
| 1. If it is critical to system<br>performance?    | *                                            | *                                                          | *                                 | *                                   |                                   |
| 2. If it can be determined by the decision maker? | *                                            | *                                                          | *                                 |                                     |                                   |
| Category of the data                              | Decision<br>variables                        | Decision<br>variables                                      | Decision<br>variables             | Parameters<br>with<br>uncertainties | Parameters<br>with fixed<br>value |

### Robustness of the solutions

ability of not causing serious discrepancies between water supply and water demand

11



### Formulation of the Model (3/3)

| 0 |     |      |  |
|---|-----|------|--|
| U | ive | en i |  |
| _ |     |      |  |

| System parameters                                                                 |       |
|-----------------------------------------------------------------------------------|-------|
| $\overline{D} = \{d\} = \{1, 2, \dots, 14\}$                                      | (P1)  |
| //The set of 14 dams (reservoirs)                                                 |       |
| $T = \{t\} = \{1, 2, 3\}$                                                         | (P2)  |
| //Planning period - twelve months                                                 |       |
| $UD_d = \{\dot{d}\}$                                                              | (P3)  |
| //The set of upstream dams (reservoirs) Detail                                    |       |
| information is in Table 1                                                         | -     |
| ST <sub>d</sub>                                                                   | (P4)  |
| //Target of water storage volume for Reservoir d at the<br>beginning of Month t   |       |
| $FT_d^t$                                                                          | (P5)  |
| //Target of water release volume to downstream for fish                           |       |
| AT <sup>t</sup>                                                                   | (P6)  |
| //Target of water release volume for agriculture and                              | (10)  |
| municipal use for Dam d in Month t                                                |       |
| $(E_d^t + P_d^t)$                                                                 | (P7)  |
| //Natural loss (evaporation and seepage) of Reservoir d in                        |       |
| Month t                                                                           | 1.2.5 |
| CF <sub>d</sub>                                                                   | (P8)  |
| //Flood capacity of Reservoir d                                                   | (00)  |
| //Minimum storage volume of Reservoir d                                           | (13)  |
| $(l_d^t + Pr_d^t)$                                                                | (P10) |
| //Anticipated natural inflow (tributary inflow and precipitation) for Reservoir d |       |
| $w_i$ , where $i = 1,2,3$                                                         | (P11) |
| //Weight of Goal i                                                                |       |
| Find                                                                              |       |
| System variables                                                                  |       |
| $S_d^t$                                                                           | (X1)  |
| //The volume of water stored in Reservoir d at the                                |       |
| beginning of Month t                                                              |       |
|                                                                                   | (X2)  |
| // The volume of water released from Dam d to                                     |       |
| $F^t$                                                                             | (X3)  |
| //The volume of water released from Dam d to                                      | ()    |
| downstream for fish in Month t                                                    |       |
| Deviation variables                                                               |       |
| $d_{i}^{+}, d_{i}^{-}$ , where $i = 1.2.3$                                        | (D)   |
| Over-achievement and underachievement of Goal i                                   | (-)   |

#### Satisfy

3 Model

**Formulation** 

| DHENIT                                                                                                                      |      |
|-----------------------------------------------------------------------------------------------------------------------------|------|
| System constraints                                                                                                          |      |
| $S_d^t + \sum_{\forall d \in UD_d} F_d^t + I_d^t + Pr_d^t - F_d^t - A_d^t - E_d^t - P_d^t =$                                | (C1) |
| $S_d^{t+1}$ , where $t = 1,2,3$                                                                                             |      |
| System goals                                                                                                                |      |
| $\sum_{d \in D} \sum_{t \in T} (1 - \frac{S_d^t}{ST_d^t})^2 + \sum_{d \in D} (1 - \frac{S_d^4}{ST_d^4})^2 + d_1^ d_1^+ = 0$ | (G1) |
| //Goal 1 – Reservoir: reach the target of water storage in                                                                  |      |
| each reservoir in the beginning of each month, and in the                                                                   |      |
| end of the last month.                                                                                                      |      |
| $\sum_{a=0}^{n} \sum_{b=0}^{n} (1 - \frac{A_{d}^{*}}{AT_{d}^{*}})^{2} + d_{2}^{-} - d_{2}^{+} = 0$                          | (G2) |
| //Goal 2 – People: reach the target of water released to                                                                    |      |
| people of each dam in each month.                                                                                           |      |
| $\sum_{d \in D} \sum_{t \in T} (1 - \frac{F_d^t}{FT_d^t})^2 + d_3^ d_3^+ = 0$                                               | (G3) |
| //Goal 3 – Fish: reach the target of water released to wild                                                                 |      |
| fish of each dam in each month.                                                                                             |      |
| Bounds                                                                                                                      |      |
| $\overline{S}_{d}^{t} \leq CF_{d}$                                                                                          | (B1) |
| $S_{4}^{t} \ge CM_{4}$                                                                                                      | (B2) |
| $F_{4}^{1} \ge 0$                                                                                                           | (B3) |
| $A_d^t \ge 0$                                                                                                               | (B4) |
| //Bounds of system variables                                                                                                |      |
| $d_i^- \ge 0, d_i^+ = 0, d_i^- \cdot d_i^+ = 0$ , where $i = 1,2,3$                                                         | (DB) |
| //Bounds of deviation variables                                                                                             |      |
| Minimize                                                                                                                    |      |
| The deviation function                                                                                                      |      |
| $z = \sum_{i=1}^{3} w_i \cdot d_i^-$ , where $0 \le w_i \le 1$ , and $\sum_{i=1}^{3} w_i = 1$                               | (Z)  |
| //The weighted sum of deviation variables                                                                                   |      |
|                                                                                                                             |      |
|                                                                                                                             |      |

**4 Post-Solution** 

Analysis

The Systems Realization Laboratory @ OU

2 Frame of Reference

and Proposed Method

**1 Problem** 

Description

🖲 Results (1/2)



Weight Scenarios (WS) Identification

#### Meaning of the Weight Scenarios (WS) Meaning of the Weight Scenarios (WS)

| WS | w1   | w2   | w3   | Tentative physical meaning                                                                                                           |
|----|------|------|------|--------------------------------------------------------------------------------------------------------------------------------------|
| 1  | 0    | 1    | 0    | People is the only important goal                                                                                                    |
| 2  | 1    | 0    | 0    | Reservoir is the only important goal                                                                                                 |
| 3  | 0    | 0    | 1    | Fish is the only important goal                                                                                                      |
| 4  | 0.25 | 0.25 | 0.5  | Reservoir and people have equal<br>importance whereas fish is much<br>more important than the former two.                            |
| 5  | 0.33 | 0.33 | 0.33 | All three goals are equally important                                                                                                |
| 6  | 0.1  | 0.1  | 0.8  | Reservoir and people are not the<br>priority whereas fish is much more<br>important than the former two.                             |
| 7  | 0.2  | 0.79 | 0.01 | People is the most important,<br>followed by reservoir, whereas fish is<br>much less important than the former<br>two <sup>1</sup> . |
| 8  | 0.4  | 0.2  | 0.4  | Reservoir and fish have equal<br>importance whereas people are less<br>important than the former two.                                |



12/2) Results

# Results of the 34 Weight Scenarios (WSs) from the Original Model

|    | Weights |      | Goals |      |      |      |       |
|----|---------|------|-------|------|------|------|-------|
| WS | W1      | W2   | W3    | G1   | G2   | G3   | Total |
| 1  | 0.33    | 0.33 | 0.33  | 0.23 | 0.53 | 0.31 | 0.44  |
| 2  | 1       | 0    | 0     | 0.00 | 2.00 | 2.00 | 0.05  |
| 3  | 0       | 1    | 0     | 1.00 | 0.00 | 2.00 | 0.00  |
| 4  | 0       | 0    | 1     | 1.00 | 2.00 | 0.00 | 0.00  |
| 5  | 0.8     | 0.1  | 0.1   | 0.16 | 0.73 | 0.62 | 0.43  |
| 6  | 0.1     | 0.8  | 0.1   | 0.24 | 0.10 | 1.60 | 0.29  |
| 7  | 0.1     | 0.1  | 0.8   | 0.31 | 1.06 | 0.02 | 0.19  |
| 8  | 0.6     | 0.2  | 0.2   | 0.20 | 0.56 | 0.37 | 0.45  |
| 9  | 0.2     | 0.6  | 0.2   | 0.23 | 0.27 | 0.77 | 0.42  |
| 10 | 0.2     | 0.2  | 0.6   | 0.26 | 0.83 | 0.09 | 0.33  |
| 11 | 0.5     | 0.25 | 0.25  | 0.21 | 0.54 | 0.34 | 0.45  |
| 12 | 0.25    | 0.5  | 0.25  | 0.23 | 0.37 | 0.54 | 0.44  |
| 13 | 0.25    | 0.25 | 0.5   | 0.25 | 0.72 | 0.15 | 0.39  |
| 14 | 0.4     | 0.3  | 0.3   | 0.22 | 0.53 | 0.31 | 0.45  |
| 15 | 0.3     | 0.4  | 0.3   | 0.23 | 0.46 | 0.38 | 0.45  |
| 16 | 0.3     | 0.3  | 0.4   | 0.23 | 0.60 | 0.24 | 0.43  |
| 17 | 0.2     | 0.4  | 0.4   | 0.24 | 0.53 | 0.29 | 0.43  |
| 18 | 0.4     | 0.2  | 0.4   | 0.23 | 0.71 | 0.18 | 0.41  |
| 19 | 0.4     | 0.4  | 0.2   | 0.22 | 0.37 | 0.56 | 0.45  |
| 20 | 0       | 0.5  | 0.5   | 0.26 | 0.56 | 0.25 | 0.41  |
| 21 | 0.5     | 0    | 0.5   | 0.07 | 2.00 | 0.00 | 0.10  |
| 22 | 0.5     | 0.5  | 0     | 0.10 | 0.02 | 2.00 | 0.13  |
| 23 | 0.5     | 0.33 | 0.17  | 0.21 | 0.38 | 0.58 | 0.45  |
| 24 | 0.17    | 0.5  | 0.33  | 0.24 | 0.43 | 0.42 | 0.44  |
| 25 | 0.33    | 0.17 | 0.5   | 0.24 | 0.82 | 0.11 | 0.37  |
| 26 | 0.67    | 0.33 | 0     | 0.09 | 0.05 | 2.00 | 0.17  |
| 27 | 0       | 0.67 | 0.33  | 0.24 | 0.37 | 0.53 | 0.42  |
| 28 | 0.33    | 0    | 0.67  | 0.08 | 2.00 | 0.00 | 0.06  |
| 29 | 0.56    | 0.33 | 0.11  | 0.20 | 0.30 | 0.86 | 0.44  |
| 30 | 0.11    | 0.56 | 0.33  | 0.24 | 0.41 | 0.45 | 0.44  |
| 31 | 0.33    | 0.11 | 0.56  | 0.24 | 0.98 | 0.07 | 0.32  |
| 32 | 0.22    | 0.33 | 0.44  | 0.24 | 0.61 | 0.22 | 0.41  |
| 33 | 0.44    | 0.22 | 0.33  | 0.22 | 0.64 | 0.24 | 0.43  |
| 34 | 0.33    | 0.44 | 0.22  | 0.22 | 0.37 | 0.55 | 0.44  |

1 Problem Description 2 Frame of Reference and Proposed Method 3 Model Formulation 4 Post-Solution Analysis

5 Closure

The Systems Realization Laboratory @ OU



### Design Preference Exploration





### **Design Preference Exploration (1<sup>st</sup> iteration)**





Figure 11 Satisficing Area for Three Goals

3 Model

**Formulation** 

#### Table 5 Range of Weights of the Satisficing Space

| Weight | Range       |  |
|--------|-------------|--|
| w1     | 0-0.65      |  |
| w2     | 0.18-0.7    |  |
| w3     | 0.15 - 0.56 |  |

**4 Post-Solution** 

**Analysis** 

The Systems Realization Laboratory @ OU



### No Sensitive Segments Identification





### Sensitive Segments Identification (1<sup>st</sup> iteration)

| #  | Inflow scenarios  | The percentage of the inflow a<br>the forecast value in each<br>month |      |      |
|----|-------------------|-----------------------------------------------------------------------|------|------|
|    |                   | M1                                                                    | M2   | M3   |
| 1  | No Rain           | 0%                                                                    | 0%   | 0%   |
| 2  | Extremely Dry     | 20%                                                                   | 20%  | 20%  |
| 3  | Dry               | 60%                                                                   | 60%  | 60%  |
| 4  | Normal            | 100%                                                                  | 100% | 100% |
| 5  | Rainy             | 150%                                                                  | 150% | 150% |
| 6  | Extremely Rainy   | 200%                                                                  | 200% | 200% |
| 7  | Flood             | 400%                                                                  | 400% | 400% |
| 8  | Rain Unevenly I   | 0%                                                                    | 200% | 100% |
| 9  | Rain Unevenly II  | 400%                                                                  | 0%   | 0%   |
| 10 | Rain Unevenly III | 400%                                                                  | 0%   | 400% |

#### **Table 6 Inflow Scenarios**

#### Table 7 Active Bounds in Each IS and WS

| Active<br>Bounds | Inflow<br>Scenarios | Weight<br>Scenarios | Physical meaning of the<br>bounds                                                       |
|------------------|---------------------|---------------------|-----------------------------------------------------------------------------------------|
| S7M2L            | 1-10                | All except<br>2, 4  | The lower bound of<br>storage volume in<br>Reservoir 7 in Month 2 is<br>relatively high |
| S7M4L            | 1-10                | All except<br>3     | The lower bound of<br>storage volume in<br>Reservoir 7 in Month 4 is<br>relatively high |
| S6M3U            | 7                   | All except 2, 3, 4  | The upper bound of<br>storage volume in<br>Reservoir 6 in Month 3 is<br>relatively low  |
| S6M4U            | 7                   | All except 2, 3, 4  | The upper bound of<br>storage volume in<br>Reservoir 6 in Month 4 is<br>relatively low  |

Table 8 Improvable Bounds in each IS and WS

| Improvable<br>bounds | Inflow<br>Scenarios | Weight<br>Scenarios | Physical meaning of<br>the constraints or<br>bounds                                    |
|----------------------|---------------------|---------------------|----------------------------------------------------------------------------------------|
| S6M3U                | 1-10                | 1, 3, 26 –<br>28    | The upper bound of<br>storage volume in<br>Reservoir 6 in Month<br>3 is relatively low |
| S6M4U                | 1-10                | 1, 26, 28           | The upper bound of<br>storage volume in<br>Reservoir 6 in Month<br>4 is relatively low |

1 Problem Description 2 Frame of Reference and Proposed Method 3 Model Formulation 4 Post-Solution Analysis

5 Closure

The Systems Realization Laboratory @ OU



### Design Improvement





## Design Improvement (1<sup>st</sup> iteration)

**Table 9 suggestions of model improvement** 



3 Model

**Formulation** 

#### Table 7 Active Bounds in Each IS and WS

A'

| Active<br>Bounds | Inflow<br>Scenarios | Weight<br>Scenarios | Physical meaning of the<br>bounds                                                       |  |
|------------------|---------------------|---------------------|-----------------------------------------------------------------------------------------|--|
| S7M2L 1 – 10     |                     | All except<br>2, 4  | The lower bound of<br>storage volume in<br>Reservoir 7 in Month 2 is<br>relatively high |  |
| S7M4L            | 1-10                | All except<br>3     | The lower bound of<br>storage volume in<br>Reservoir 7 in Month 4 is<br>relatively high |  |
| S6M3U            | 7                   | All except 2, 3, 4  | The upper bound of<br>storage volume in<br>Reservoir 6 in Month 3 is<br>relatively low  |  |
| S6M4U            | 7                   | All except 2, 3, 4  | The upper bound of<br>storage volume in<br>Reservoir 6 in Month 4 is<br>relatively low  |  |

#### Table 8 Improvable Bounds in each IS and WS

| Improvable<br>bounds | Inflow<br>Scenarios | Weight<br>Scenarios | Physical meaning of<br>the constraints or<br>bounds                                    |
|----------------------|---------------------|---------------------|----------------------------------------------------------------------------------------|
| S6M3U                | 1-10                | 1, 3, 26 –<br>28    | The upper bound of<br>storage volume in<br>Reservoir 6 in Month<br>3 is relatively low |
| S6M4U                | 1-10                | 1, 26, 28           | The upper bound of<br>storage volume in<br>Reservoir 6 in Month<br>4 is relatively low |

**4 Post-Solution** 

**Analysis** 

The Systems Realization Laboratory @ OU

**Description** 

and Proposed Method



### Design Preference Exploration







### Design Preference Exploration (2<sup>nd</sup> iteration)



Model (1) and the Improved Model (2)





### No Sensitive Segments Identification





### Sensitive Segments Identification (2<sup>nd</sup> iteration)

| #  | Inflow scenarios  | The percentage of the inflow as<br>the forecast value in each<br>month |      |      |
|----|-------------------|------------------------------------------------------------------------|------|------|
|    |                   | M1                                                                     | M2   | M3   |
| 1  | No Rain           | 0%                                                                     | 0%   | 0%   |
| 2  | Extremely Dry     | 20%                                                                    | 20%  | 20%  |
| 3  | Dry               | 60%                                                                    | 60%  | 60%  |
| 4  | Normal            | 100%                                                                   | 100% | 100% |
| 5  | Rainy             | 150%                                                                   | 150% | 150% |
| 6  | Extremely Rainy   | 200%                                                                   | 200% | 200% |
| 7  | Flood             | 400%                                                                   | 400% | 400% |
| 8  | Rain Unevenly I   | 0%                                                                     | 200% | 100% |
| 9  | Rain Unevenly II  | 400%                                                                   | 0%   | 0%   |
| 10 | Rain Unevenly III | 400%                                                                   | 0%   | 400% |

**Table 6 Inflow Scenarios** 

| <b>A</b> |  |
|----------|--|
|          |  |
|          |  |
|          |  |
|          |  |
|          |  |
|          |  |
|          |  |
|          |  |
|          |  |
|          |  |
|          |  |
|          |  |
|          |  |
|          |  |

3 Model

**Formulation** 

| Active<br>Bounds | Physical meaning of the bounds                                                          | Further improvement<br>Suggestions                                 |  |
|------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------|--|
| S7M3L            | The lower bound of<br>storage volume in<br>Reservoir 7 in Month<br>3 is relatively high | Raise the lower bound of<br>storage volume in<br>Reservoir 7 by 1% |  |

**1 Problem** 

Description

| Improvable<br>Bounds | Physical meaning of<br>the constraints or<br>bounds                                      | Further improvement<br>Suggestions                                 |  |
|----------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--|
| S4M1                 | The storage volume in<br>Reservoir 4 in the<br>beginning of Month 1<br>is relatively low | Raise the lower bound of<br>storage volume in<br>Reservoir 4 by 1% |  |

**4 Post-Solution** 

**Analysis** 



**2 Frame of Reference** 

and Proposed Method



### Design Improvement







### Design Improvement (2<sup>nd</sup> iteration)







### Design Improvement Validation



With continuous improvement, which is going through the three steps for many several iterations, we finally get a model with <u>no sensitive segments</u>, which means all the solutions are not at or close to the boundary, and we have <u>no potential to further</u> <u>improve</u> the achievement of the goals.



### Closure

- Explore the solution space using three steps
- Identify feasible area of weights and provide their physical meanings
- Use inflow scenarios considering different weather and climate conditions to identify sensitive segments
- Improving the design by bring the solutions away from the boundary and relaxing the constraints to better achieve the goals
- With satisficing solutions, we reduce the frequency and severity of discrepancies between water supply and water demand and hence reduce the flood and drought risk
- Future work:
  - more functionalities (hydropower, industry water demand),
  - more types of uncertainties (fluctuation in user demand),
  - self-learning algorithms to improve design automatically, etc.

28