TOWARDS RAPID FLORISTIC QUALITY ASSESSMENT OF OKLAHOMA WETLANDS USING PLANT INDICATOR SPECIES

Tommi Fouts, Suneeti Jog, Jason Bried Northeastern State University

WETLAND BIOASSESSMENTS

Ecological health

Importance in Oklahoma

Challenges

WETLAND BIOASSESSMENTS

Ecological health

Importance in Oklahoma

Challenges

ENVIRONMENTAL HETEROGENEITY

 Natural variability vs disturbance

- Stratification by
 - Ecoregion?
 - Hydrogeomorphic Class?

(Brinson 1993, Dvorett et al. 2012)

WETLAND BIOASSESSMENTS

Ecological health

Importance in Oklahoma

Challenges

BIOASSESSMENT METHODS

Landscape assessments

Rapid assessments

Intensive assessments

WETLAND BIOASSESSMENTS

- Evaluate shortcuts around intensive assessments
 - Landscape and rapid assessments
 - Plant Indicator species

(Bried et al. 2014, 2016, Jog et al. 2017)

OBJECTIVES

 Determine if indicator species performance improves with increasing environmental stratification

2. Find indicator species for low, medium, and high quality wetlands

3. Validate indicator species

METHODS

- 117 sites (previously surveyed)
- Sampled by
 - EPA protocol
 - Meandering searches
- Identified all vascular species

(U.S. EPA 2011)

LOCATIONS

METHODS

- Indicator Species Analysis (ISA)
 - Group Sites
 - Extract indicators
- Stratification Analysis
 - 3 stratification levels
- Quality Analysis
 - 3 quality levels

ISA uses an algorithm to statistically determine which species are indicative of the target group

(De Cáceres et al. 2012)

Stratification Analysis

- All Sites
- Depressions
- CGP Depressions

STRATIFICATION ANALYSIS – RESULTS

STRATIFICATION ANALYSIS – RESULTS

	False Positive Rate		
Indicators	All Sites	Depressions	CGP Depressions
Eleocharis compressa	0.165	0.149	0.117
Hordeum jubatum	0	0	0
Schoenoplectus pungens	0	0	0
Typha angustifolia	0.275	0.279	0.231
Salix nigra + Typha angustifolia	0.222	0.222	0.178

- Extract quality indicators from:
 - Lowest stratification (All Sites)
 - Highest stratification (CGP depressions)

SUCCESSFUL METRICS

- Coefficient of Conservatism (CoC)
 - 0 3 : Tolerant of high disturbance
 - 4 6: Tolerant of moderate disturbance
 - 7 10 : Intolerant of disturbance
- Floristic Quality Assessment Index (FQI)

$$FQI = \bar{C} \times \sqrt{S}$$

Quality analysis

- All Sites
 - Low
 - Medium
 - High

- CGP Depressions
 - Low
 - Medium
 - High

QUALITY ANALYSIS – RESULTS

All Sites

Low Quality Sites

High Quality Sites

Tamarix chinensis

Limnosciadium pinnatum •

Populus deltoides + Salix nigra

Boehmeria cylindrica

Juncus diffusissimus

QUALITY ANALYSIS – RESULTS

CGP Depressions

Low Quality Sites

High Quality Sites

Tamarix chinensis

Eleocharis compressa + Rumex crispus

Quality analysis

- Handful of species
- Congruence with metrics
- Potential tool

NEXT STEP

- Validation
 - Intensive surveys
 - Compare quality levels
- 8 sampled so far
 - Finding indicators

CONCLUSIONS

Environmental stratification may improve indicator species performance

 Extracted indicator species look promising as a tool for rapid floristic quality assessment

Validation still needed

ACKNOWLEDGEMENTS

- Jana Green
- Kirk Kuykendall
- Bruce Hoagland
- Dan Dvorett
- EPA
- NSF Epscor
- NSU FRC grant
- OCC

QUESTIONS?

