

Recovery of Fish Populations in an Unnamed Tributary to Tar Creek After The Implementation of Two Passive Treatment Systems

Nicholas L. Shepherd William J. Matthews and Robert W. Nairn

Introduction

Methods

Results

Conclusions

Introduction

Introduction: Tar Creek Superfund Site

- Oklahoma portion of the abandoned Tri-State Lead-Zinc Mining District
 - Approximately 40 square mile site
 - Trace metal contamination (Fe, Zn, Cd, Pb)
 - Negatively impacts aquatic and terrestrial biota

Introduction: Unnamed Tributary (UT)

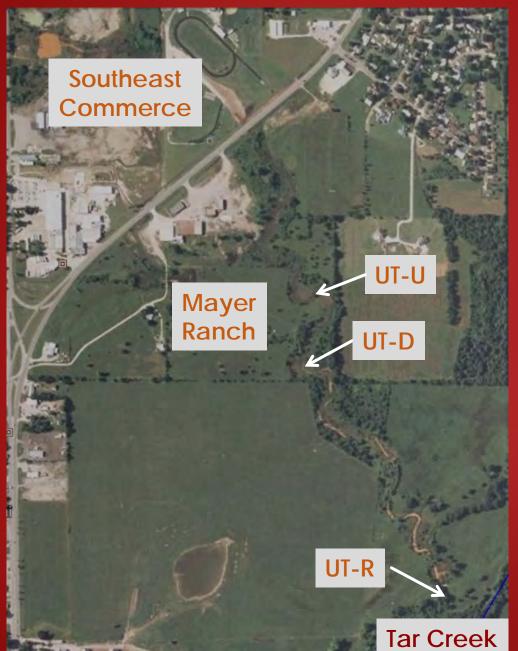
Introduction: Passive Treatment

- Naturally-occurring biogeochemical, microbiological and ecological processes
- Driven by renewable energies
- ► Low O&M costs but larger land areas

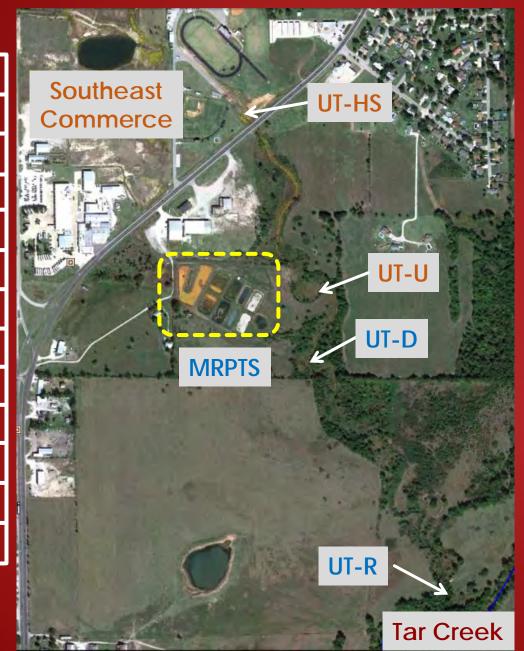
Ecological Engineering!

Methods

Methods: Fish Collection


- Periodic sampling since 2005
 - Before and after PTS implementation
- ▶ 10 seine hauls at each location per sampling event
- Identify fish in the field or laboratory

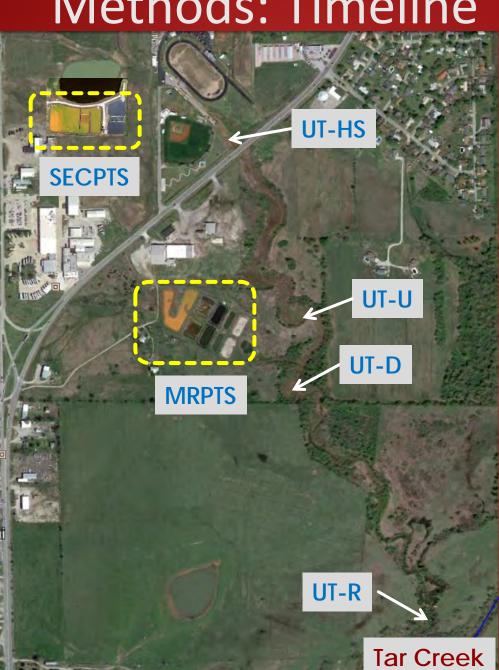
Methods: Timeline



MD Discharge Metals Concentrations (mg/L)

	SEC	MR
[Fe]	133	175
[Zn]	9.71	8.42
[Pb]	0.063	0.069
[Cd]	0.031	0.016

Methods: Timeline



MD Discharge Metals Concentrations (mg/L)

	SEC	MRPTS
[Fe]	133	0.65
[Zn]	9.71	0.46
[Pb]	0.063	<pql< th=""></pql<>
[Cd]	0.031	<pql< th=""></pql<>

Methods: Timeline

MD Discharge Metals Concentrations (mg/L)

	SEC	MRPTS
[Fe]	0.86	0.65
[Zn]	0.13	0.46
[Pb]	0.028	<pql< th=""></pql<>
[Cd]	<pql< th=""><th><pql< th=""></pql<></th></pql<>	<pql< th=""></pql<>

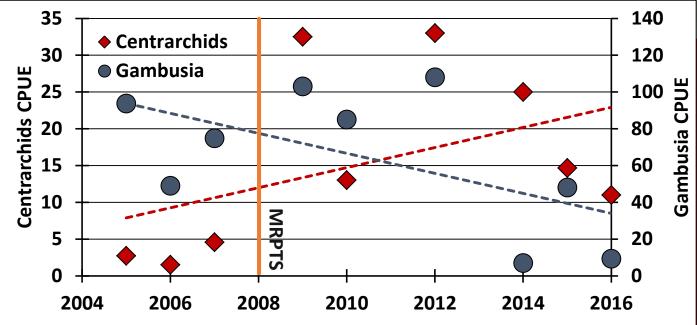
Results

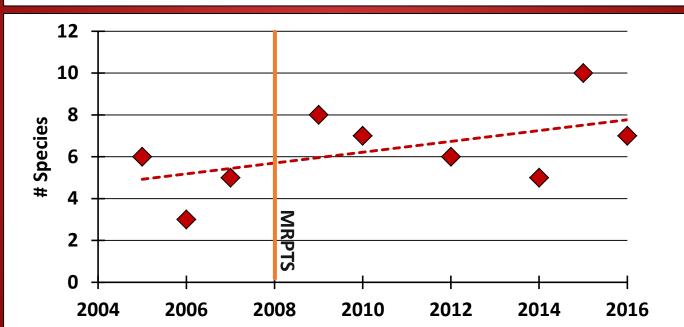
Results: Tar Creek-Robinson

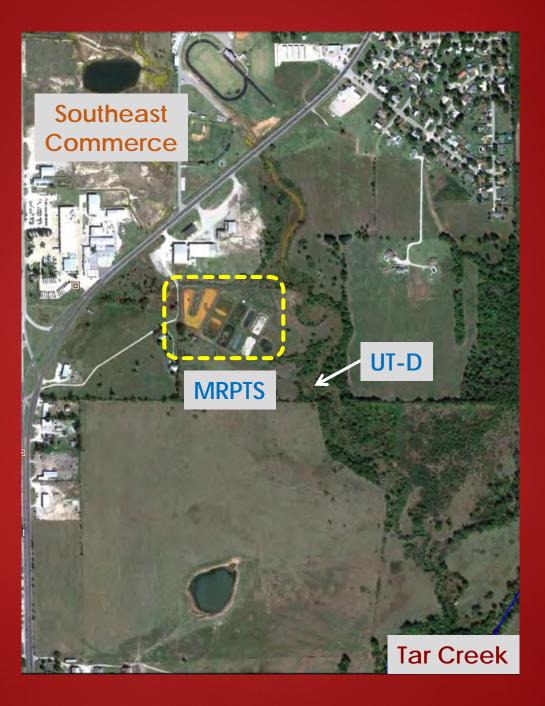
Fishes available to colonize UT from Tar Creek

Possible New Species for	Total caught 2005-2010
Unnamed Tributary	in Tar Creek
Red shiner	93
Redfin shiner	65
Central Stoneroller	63
Largemouth bass	53
Bluntnose minnow	6
Smallmouth buffalo	5
Redear sunfish	3
Emerald shiner	3
Brook silversides	2
Logperch	2
Channel catfish	2
Orangespotted sunfish	1
White crappie	1
Bullhead minnow	1
Bluntface shiner	1
Total Species	15

Results: UT-Robinson


UT-R annual average CPUE before and after MRPTS construction


Specie	2005-2007	2008	2009-2017	
Western Mosquitofish	72.5		56.1	Decrease
Green Sunfish	2.6		10.4	Increase
Slough Darter	0.3		0.3	Same
Bluegill	0.3	_	4.7	Increase
Blackstripe Topminnow	0.1	tio	18.4	Increase
Black Bullhead	0.0	ruc		
River Carpsucker	0.0	ıstı		
Golden Shiner	0.1	Construction		
Redear Sunfish			2.8	New
Longear Sunfish		MRPTS	1.7	New
Largemouth Bass		Σ	1.2	New
Sunfish Hybrid			0.4	New
Brook Silverside			0.3	New
Warmouth			0.5	New
White Crappie			0.1	New
Total Species:	8		12	



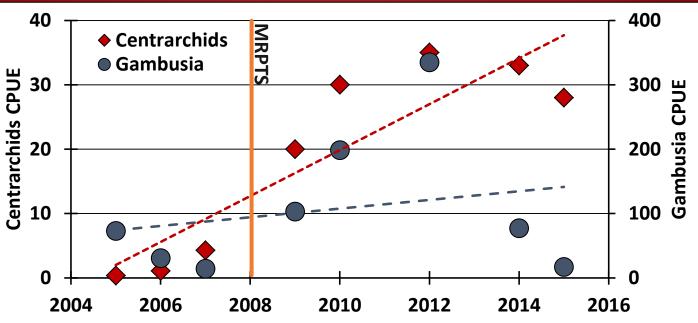
Results: UT-Robinson

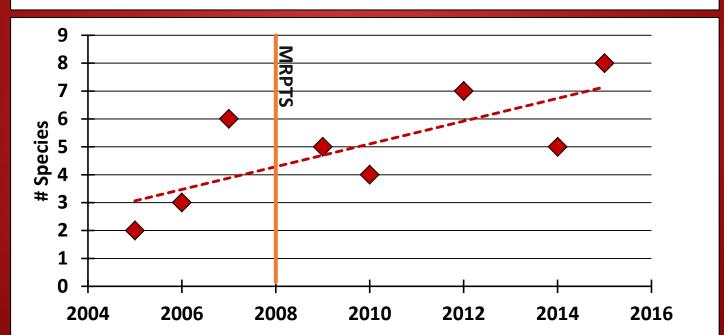
Results: UT- Downstream of MRPTS

UT-D annual average CPUE before and after MRPTS construction

Specie	2005-2007	2008	2009-2015	
Western Mosquitofish	39.23		146.10	Increase
Green Sunfish	0.80		16.90	Increase
Bluegill	1.00	on	6.60	Increase
Longear Sunfish	0.03	ucti	3.40	Increase
Golden Shiner	0.17	strı	0.60	Increase
Warmouth	0.07	Construction	0.50	Increase
Redear Sunfish			1.20	New
Blackstripe Topminnow		MRPTS	1.06	New
Slough Darter		Σ	0.80	New
Largemouth Bass			0.46	New
Black Bullhead			0.26	New
Hybrid Sunfish			0.14	New
Total Species:	6		11	

Results: UT- Downstream of MRPTS



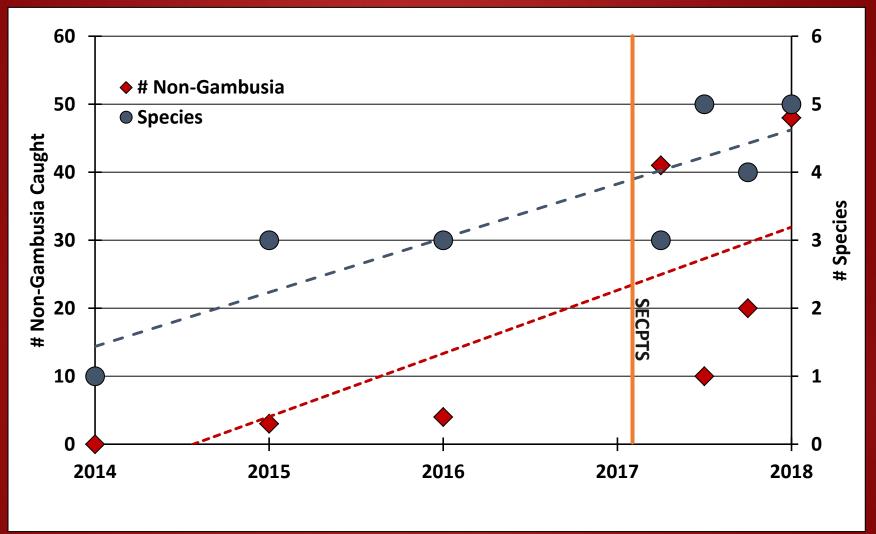


Results: UT-Downstream of MRPTS

Results: UT- Highschool

UT-HS Total fish caught before and after SECPTS construction

Species	2014-2016		2017-2018
Sample Size	3	(Feb)	4
Western Mosquitofish	131	eq	67
Green Sunfish	2	et	33
Bluegill	4	Completed	78
Largemouth Bass	1	ပိ	1
Blackstripe Topminnow	0	TS	5
Warmouth	0	SECP.	2



Results: UT- Highschool

Conclusions

Conclusions

- Diversity and quantity of fish has increased after implementation of passive treatment
 - ► UT-R 8 increased to 12 species
 - ► UT-D 6 increased to 11 species
 - ► UT-HS 4 increased to 6 species
 - ▶ With 92% increase in non-mosquito fish per sample

Passive treatment has significantly decreased metals concentrations and increased fish species diversity in UT

Continued monitoring is warranted to determine the impact of SECPTS over the next few years

Acknowledgements

- Property owners: Mayer, Robinson, Martin Families
- University of Oklahoma Zoology/Biology Department
 - Dr. Matthews and students
- Center for Restoration of Ecosystems and Watersheds (CREW)
- City of Commerce
- Quapaw Tribe
- Oklahoma Department of Environmental Quality
- Grand River Dam Authority
- United States Environmental Protection Agency: Water Division
- ► CH2M MRPTS design and construction
- Biomost SECPTS design and construction

