A three-dimensional lake model to support total maximum daily load development for Lake Wister

J. Thad Scott, Erin Grantz, and Steve Patterson @ScottBiogeochem

Lake Wister

State of Oklahoma 303d List of Impaired Waterbodies:

- Chlorophyll-a
- Dissolved Oxygen
- Total Phosphorus
- Turbidity
- pH
- Mercury

2013 – Contracted with Poteau Valley Improvement Authority:

- 1. Sediment analysis
- 2. Water quality model

Presentation Overview

- History of modeling and water quality analyses
- Summary of existing watershed and in-lake data
- Model selection process
- Lake Wister ELCOM-CAEDYM model setup
- Lake Wister ELCOM-CAEDYM model calibration
- Lake Wister ELCOM-CAEDYM model planned simulations

Modeling approach (AMEC and Dynamic Solutions):

<u>Watershed inputs</u> – derived from modeling using the Water Quality Analysis Simulation Program (WASP 7)

<u>WASP calibration</u> – from USGS flow data and Oklahoma Conservation Commission in-stream WQ data

<u>Lake Model</u> – Environmental Fluid Dynamic Code (EFDC); 3D to simulate inflows and wind-driven mixing EFDC calibration – measured data from summer 2001

Prepared for:

Prepared by:

Dynamic Solutions Knoxville, Tennessee

ጲ

AMEC Earth & Environmental, Inc. Westford, Massachusetts

OKLAHOMA DEPARTMENT OF ENVIRONMENTAL QUALITY, WATER QUALITY DIVISION Oklahoma City, Oklahoma

Figure 3-11. Lake Wister Water Quality Calibration: Chlorophyll-a Dam Site 1

Prepared for:

OKLAHOMA DEPARTMENT OF ENVIRONMENTAL QUALITY, WATER QUALITY DIVISION Oklahoma City, Oklahoma

Prepared by:

nmental, Inc. assachusetts &

mic Solutions e, Tennessee

Table 3-4. Summary of the Sediment Nut	rient Fluxes for the Lake Wister Model
--	--

	Benthic Flux Rates (g/m²/day)							
Benthic Zone	Phosphate	Ammonia	Nitrate	Silica	СОД	SOD		
Zone 1	0.03	0.2	0.06	0.00	0.00	-3.5		
Zone 2	0.05	0.3	0.10	0.00	0.00	-5.0		

Overestimated benthic flux resulted in underestimated watershed contribution

Table 3-6. Summary of the Lake Wister Base Case Average TN and TP Concentrations: Calibration Period

Wator Quality	In Lake Co	ncentration		Incomin	ig Load	
Parameter			Fourche	Maln e Creek	Pote	au River
	Data	Model	(mg/l)	(% of ⊾nke)	(mg/l)	(% of Lake)
TN	0.99	0.88	0.0169	1.7%	0.0251	2.5%
TP	0.16	0.09	0.0022	1.4%	0.0116	7.3%

Prepared for:

OKLAHOMA DEPARTMENT OF ENVIRONMENTAL QUALITY, WATER QUALITY DIVISION Oklahoma City, Oklahoma

Trepared by:

Table 3-4. Summary of the Sediment Nutrient Fluxes for the Lake Wister Model

nental, Inc. sachusetts & c Solutions Tennessee

	Benthic Flux Rates (g/m²/day)							
Benthic Zone	Phosphate	e Ammonia	Nitrate	Silica	COD	SOD		
Zone 1	0.03	0.2	0.06	0.00	0.00	-3.5		
Zone 2	0.05	0.3	0.10	0.00	0.00	-5.0		

Reservoir	Site Description	Aerobic Flux (mg/m²/d)	Anaerobic Flux (mg/m²/d)	Reference
Lake Wister, Oklahoma	Shallow Waters	50 (calibrate	ed parameter)	AMEC (2008)
	Deep Waters	30 (calibrate	ed parameter)	
Beaver Lake, Arkansas	Riverine Zone	0.13	0.85	Sen et al. (2007)
	Transition Zone	0.15	1.77	
	Lacustrine Zone	0.04	< 0.01	
Lake Eucha, Oklahoma	Riverine Zone	1.14	4.70	Haggard et al. (2005)
	Transition Zone	1.01	2.46	
	Transition Zone	0.95	6.05	
Lake Frances, Arkansas –	Headwaters	0.37	14.53	Haggard and Soerens
Oklahoma	Near Dam	3.57	15.53	(2006)

Haggard, Scott, and Patterson. Lake and Reservoir Management 2012

Sediment phosphorus flux in an Oklahoma reservoir suggests reconsideration of watershed management planning

B.E. Haggard,^{1,*} J.T. Scott,² and S. Patterson³

¹Arkansas Water Resources Center, University of Arkansas, Fayetteville, AR ²Crop, Soil and Environmental Sciences Department, University of Arkansas, Fayetteville, AR ³BioxDesign, Poteau, OK

Table 2.-Mean soluble reactive phosphorus (SRP) release rates or flux (mg/m²/d) from intact sediment cores collected on 14 July 2010 from 3 sites in Lake Wister, OK.

Site	Treatment	Slope (mg/d)	R ²	P Value	Mean Flux* (mg/m²/d)
1	Aerobic	0.0024	0.41	0.17	0.75
1	Anaerobic	0.0048	0.78	0.02	1.52
2	Aerobic	0.0036	0.42	0.16	1.13
2	Anaerobic	0.0104	0.98	< 0.01	3.30
3	Aerobic	0.0030	0.75	0.03	0.94
3	Anaerobic	-0.0007	0.42	0.16	-0.23

*Mean flux was reported as a numerical value even if the slope of the linear regression was not significantly different from zero (P > 0.05).

Prepared for:

OKLAHOMA DEPARTMENT OF ENVIRONMENTAL QUALITY. WATER QUALITY DIVISION Oklahoma City, Oklahoma

Prepared by:

nmental, Inc. assachusetts &

mic Solutions .e, Tennessee

Tuble 0 4. Cullinary of the Couldent Huttlent Hutes for the Earce Wister Model									
	Benthic Flux Rates (g/m²/day)								
Benthic Zone	Phospha	ate	Ammonia	Nitrate	Silica	COD	SOD		
Zone 1	-0.03	0.003	0.2	0.06	0.00	0.00	-3.5		
Zone 2	0.05	0.001	0.3	0.10	0.00	0.00	-5.0		

Table 3-4 Summary of the Sediment Nutrient Fluxes for the Lake Wister Model

Overestimated benthic flux resulted in underestimated watershed contribution

Table 3-6. Summary of the Lake Wister Base Case Average TN and TP Concentrations: **Calibration Period**

Weter Quelity In Lake Concentration		Incoming Load						
Parameter			ameter Fourche Maline Creek				Pote	au River
	Data	Model	(mg/l)	(% of Lake)	(mg/l)	(% of Lake)		
TN	0.99	0.88	0.0169	1.7%	0.0251	2.5%		
TP	0.16	0.09	0.0022	1.4%	0.0116	7.3%		

Existing data for Lake Wister and watershed

Prepared in cooperation with the Poteau Valley Improvement Authority

Concentrations, Loads, and Yields of Total Phosphorus, Total Nitrogen, and Suspended Sediment and Bacteria Concentrations in the Wister Lake Basin, Oklahoma and Arkansas, 2011–13

	В	ase-flow c	oncentratio	ons			Runoff con	centration	5	
Station name	Minimum	Median	Mean	Maximum	ohs	Minimum	Median	Mean	Maximum	ohs
(number)	Total phosphorus (mg/L as P)		Total phosphorus (mg/L as P)				003.			
Poteau River at Loving, Okla. (07247015)	0.043	0.055	0.065	0.152	17	0.06	0.279	0.273	0.461	18
Poteau River near Heavener, Okla. (07247350)	0.023	0.05	0.056	0.114	15	0.051	0.205	0.196	0.378	22
Fourche Maline near Leflore, Okla. (07247650)	0.04	0.069	0.069	0.096	11	0.034	0.142	0.176	0.717	24

Scientific Investigations Report 2014-5170

Existing data for Lake Wister and watershed

Model Selection Process

and

Steven Patterson, Ph.D. Bio x Design Poteau, Oklahoma <u>spatterson@bioxdesign.com</u>

Figure 1. Spatial dimensions involved in hydrodynamic and water quality modeling of reservoirs: A) Zero-dimensional, B) One-dimensional, C) Two-dimensional, and D) Threedimensional.

Two model options:

Environmental fluid dynamic code (EFDC)

- Open source (sort of...)
- Widely utilized by USEPA
- Standard internal diffusive flux model
- P adsorption/desorption with partitioning coefficients

Computational Aquatic Ecosystem Dynamic Model (CAEDYM)

- Proprietary (U Western Australia; Zephyr Systems)
- Rarely used by USEPA
- Standard internal diffusive flux model
- P adsorption/desorption using EPC₀

Two model options:

Environmental fluid dynamic code (EFDC)

- Open source (sort of...)
- Widely utilized by USEP/
- Standard internal diffusi
- P adsorption/desorptior

Computational Aquatic Eco (CAEDYM)

- Proprietary (U Western
- Rarely used by USEPA
- Standard internal diffusive flux model
- P adsorption/desorption using EPC₀

Hydrobiologia (2012) 683:25-34 DOI 10.1007/s10750-011-0957-0

OPINION PAPER

A community-based framework for aquatic ecosystem models

Dennis Trolle • David P. Hamilton • Matthe Jorn Bruggeman • Wolf M. Mooij • Jan H. J. Alex Elliott • Vardit Makler-Pick • Thom Mogens R. Flindt • George B. Arhonditsis • Koji Tominaga • Jochem't Hoen • Andrea S Carlos R. Fragoso Jr. • Martin Søndergaard

Received: 15 August 2011/Revised: 1 November 201 © Springer Science+Business Media B.V. 2011

ELCOM-CAEDYM chosen as modeling platform for Lake Wister ELCOM = estuarine, lake and coastal ocean model is a hydrodynamic model coupled to CAEDYM

Clelia Marti – U Western Australia

ELCOM-CAEDYM training in Fayetteville, AR – March 2015

Conservation Pool Bathymetry Measured by OWRB

Lake Wister is NOT regularly at the conservation pool elevation

Integrated flood pool into continuous bathymetry for Lake Wister

Integrated flood pool into continuous bathymetry for Lake Wister

Conservation pool is not the norm

Thermal stratification is temporary

2013-01-01 03:59:00

 \times

Model calibration ongoing

Model calibration ongoing

Model simulation years 2011 – 2015 Calibration years: 2011, 2013, 2015 Validation years: 2012, 2014

Parameter (units)	Current RMSE	Target RMSE
Surface Temperature (°C)	2.1	1.6
Bottom Temperature (°C)	1.9	2.7
Total Phosphorus (mg/L)	0.104	0.11
Soluble Reactive P (mg/L)	0.083	0.03
Total Nitrogen (mg/L)	0.71	0.49
Nitrate (mg/L)	0.74	
Ammonium (mg/L)	0.24	0.20
Chlorophyll-a (µg/L)	4.1	14.2
Dissolved Oxygen (mg/L)	1.5	1.6

Low internal loading by inaccurate stratification duration

Low internal loading by inaccurate stratification duration

bioxdesign

Project Next Steps:

- Complete calibration
- Simulate systematic load reductions on water quality with calibrated model
- Derive specific load reduction estimates needed to achieve water quality targets for Lake Wister
- Simulate the effect of lake management options (alum; wind breaks)
- Final modeling report in November 2016

Funding provided by Poteau Valley Improvement Authority

Questions?

J. Thad Scott @ScottBiogeochem jts004@uark.edu

