Effectiveness of Bioretention Cells for Removal of Pollutants from Stormwater in Oklahoma

> Alex J. McLemore, Jason Vogel Glenn Brown, Saroj Kandel Biosystems and Agricultural Engineering Oklahoma State University

BIOSYSTEMS AND AGRICULTURAL ENGINEERING Oklahoma State University

OUTLINE

- Brief LID background
- Site descriptions
 - Grove, OK
 - Oklahoma City, OK
- Water Quality Monitoring Setup

- Pollution reduction results
- Conclusions

COMPARISON OF UNDEVELOPED AND DEVELOPED HYDROLOGY

BIOSYSTEMS AND AGRICULTURAL ENGINEERING

More development generally means

- more impervious area
- more runoff
- less infiltration
- less
 evapotranspiration

WHAT IS LOW IMPACT **DEVELOPMENT?**

Mimics a site's predevelopment hydrology through design techniques that infiltrate, filter Essentially, post-development runoff selected and selected and

EXCESS PHOSPHORUS

Eutrophication & impaired water bodies.

Lake Erie "Toledo Crisis" 2012

Toxic algal bloom in Marion Reservoir in the headwaters of the Grand Lake Watershed (photo courtesy of Gerard A. Clyde, Jr., US Army Corps of Engineers, Tulsa District).

OBJECTIVE

 Examine pollutant removal efficiencies of multiple bioretention cells in Oklahoma

GRAND LAKE

 Grand Lake, OK, like many waters in the U.S. suffers due to phosphorus (P) over-enrichment.

- Under EPA 319h funding through the Oklahoma Conservation Commission (2005-2008), eight BRC were built in Grove, OK in the Grand Lake basin with the specific goal of reducing P inflow to the lake.
- Under EPA 319h funding through the Oklahoma Department of the Environment (2012-2015), we have gone back and sampled the cells to quantify their performance.
 BIOSYSTEMS AND AGRICULTURAL ENGINEERING

GROVE, OK

- 10 BRCs were constructed in 2007 to demonstrate P reduction efficiency.
- Filter media a blend of sand & 5% fly ash
- 3 BRCs at Grove, OK used for this study

GROVE, OK

	Grand Lake Association	Grove High School	Elm Creek Plaza
Cell Name	GLA	GHS	ECP
Land Use	Paved/ Turf	Paved	Paved
Drainage area(Acres)	1.90	0.65	0.62
Cell area (m ²)	172	149	63
Surface/drainage area ratio	2%	6%	2%
Ponding depth (cm)	15-30	15-30	15-30
Fill media depth (m)	1	0.85	1

LAKE THUNDERBIRD

- Both Hog Creek and Lake Thunderbird are listed on the EPA 303(d) list for low dissolved oxygen and turbidity.
- Sediment and phosphorus in stormwater runoff are major contributors for the development of low dissolved oxygen and high turbidity conditions.

OKLAHOMA CITY - 'GREEN SWING'

- Installed Spring 2014
- 8800 ft² cell
- Sample stormwater at inlet, overflow, and underdrain
- 9-acre drainage area (houses on 1-acre lots)
- Monitored during spring summer and fall of

MONITORING - EQUIPMENT

- Flow measurement
 - H-flumes, sharp edged wiers, Palmer-**Bowlus Flumes**
 - Pressure level sensors
- ISCO refrigerated samplers
- Rain Gauge
- Measure
 - Phosphorus total and dissolved
 - Nitrogen total and dissolved
 - Metals
 - Total suspended solids
 - Turbidity
 - Bacteria
 - pH, EC

ELM CREEK PLAZA, GROVE, OK

DIOJIJIENIJAND ANRICULIUKAL ENGINEEKING

ELM CREEK PLAZA - GROVE, OK

- Peak delay: 21 mins
- Number of samples: Inlet=8 Underdrain=11

Percent reductions (concentrations)

NO3-N

Percent reductions (concentrations)

Percent reductions (concentrations) Trubidity TSS Total N -369 NO3-N Ortho-P Total P

-100

-50

■ GEC ■ GHS ■ GLA ■ OGS

0

100

50

BIOSYSTEMS AND AGRICULTURAL ENGINEERING

-200

-150

-250

Percent reductions (concentrations)

Percent reductions (concentrations)

CONCLUSIONS

- Pollutant concentrations flowing in vary across our sites
- Overall, bioretention cells reduce concentration of pollutants from stormwater
 - Nitrogen was not reduced by Grove cells
- Percent reduction vary among pollutants and among sites
- These cells do reduce Phosphorus (Total and Dissolved) and sediments (TSS and Turbidity)
- Mass removal is dependent on:

Thanks!

For more information, JASON R. VOGEL, PH.D., P.E. JASON.VOGEL@OKSTATE.EDU LID.OKSTATE.EDU TWITTER: @JASONVOGEL1

BIOSYSTEMS AND AGRICULTURAL ENGINEERING Oklahoma State University

