Relationship Between Landsat 8 Spectral Reflectance and Chlorophyll-a in Grand Lake, Oklahoma

Presented by:
Abu Mansaray

Research Team
Dr. Andrew Dzialowski (PI), Oklahoma State University
Dr. Scott Stoodley (Co-PI), Oklahoma State University
Dr. Daniel Storm (Co-PI), Oklahoma State University
Dr. Nate Torbick (Co-PI), Applied Geosolutions
Abubakarr Mansaray (PhD Student), OSU, Environmental Science Graduate Program

Funding Provided by Grand River Dam Authority (GRDA)
Dr. Darrell Townsend, Steve Nikolai, and Dr. Rich Zamor
Grand Lake o’ the Cherokees

- Located in Northeast Oklahoma in the foothills of the Ozark Mountain Range
- Administered by Grand River Dam Authority, an Oklahoma State Agency
- Pensacola Dam completed 1940
- 46,500 surface acres
- Designated Uses
 - Hydroelectric power
 - Flood control
 - Water supply
 - Recreation

http://mygrandlakehomes.com/
Grand Lake Water Quality Issues

• Blue-Green Algae Bloom, 2011
• Elevated Microsystin levels up to over 350 µg/l
• WHO – Adverse Health Effects when over >20 µg/l
• DEQ issued alert
• GRDA shut down the lake on July 4th 2011
• Monitoring Program has grown significantly (Townsend, OCLWA, 2014)
Grand Lake Project Objectives

- Relate *in situ* water quality data to spectral reflectance data
- Develop algorithms to predict water quality parameters based on an empirical model and semi-analytical shape derivative approach
- Spectral Data
 - Temporally and spatially corresponding Landsat satellite imagery
 - Landsat 8 OLI (Operational Land Imager) and historical Landsat 5 TM (Thematic Mapper) 30-meter resolution multispectral satellite imagery.
 - Proba CHRIS satellite observations
 - Develop semi-analytical algorithms for hyperspectral instruments

Water Quality Data Remotely Sensed Data

Temporally & Spatially Coincident
Presentation Objective

- Determine which Landsat 8 Surface Reflectance (SR) bands better predict CHL-a in Grand Lake, using the following datasets
 - 8 bands of Landsat 8 SR values for Aug. 14th and Sept. 15th 2015
 - Temporally coincident \textit{In situ} CHL-a data from 13 sampling points in the Grand Lake, Oklahoma
Literature Review

- **Han & Rundquist (1997)**
 - NIR/RED (Band 5/Band 4) comparison
 - NIR/Red ratio not an effective algal-chlorophyll concentration predictor

- **Arenz Jr. & Saunders III (1996)**
 - NIR/Green (Band 5/Band 3) comparison
 - Strong relationship ($R^2 = 0.98$)

- **Pattiaratchi, Wyllie & Hick (2007)**
 - Combined Band 1 & Band 3
 - High predictive confidence

- **Torbick et al. (2013)**
 - Lake water Quality Mapping
 - Band ratio radiance models performed well ($R^2 = 0.65-0.81$)
Data Acquisition

- USGS Earth Explorer – downloaded Landsat 8 images in GeoTIFF format
- Created ArcMap project
- ESRI Image Classification tool
 - Created polygons at Sampling sites
 - Calculated mean reflectance per selected pixel
- Export analysis to MS Excel and combine with In-situ CHL-a data
Landsat Download Bands

<table>
<thead>
<tr>
<th>Bands</th>
<th>Wavelength (nm)</th>
<th>Resolution (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Band 1 - Coastal aerosol</td>
<td>430 - 450</td>
<td>30</td>
</tr>
<tr>
<td>Band 2 - Blue</td>
<td>450 - 510</td>
<td>30</td>
</tr>
<tr>
<td>Band 3 - Green</td>
<td>530 - 590</td>
<td>30</td>
</tr>
<tr>
<td>Band 4 - Red</td>
<td>640 - 670</td>
<td>30</td>
</tr>
<tr>
<td>Band 5 - Near Infrared (NIR)</td>
<td>850 - 880</td>
<td>30</td>
</tr>
<tr>
<td>Band 6 - SWIR 1</td>
<td>1570 - 1650</td>
<td>30</td>
</tr>
<tr>
<td>Band 7 - SWIR 2</td>
<td>2110 - 2290</td>
<td>30</td>
</tr>
<tr>
<td>Band 8 - Panchromatic</td>
<td>0.50 - 0.68</td>
<td>15</td>
</tr>
</tbody>
</table>

1. Seasons
 - Spring, Summer, Fall
 - Capture spatial and temporal variability in water quality

2. Sample dates
 - Temporally coincident satellite overpass
 - Sampling begins just prior to satellite overpass and continues for a short period after

3. Alternative
 - +/- 2 days of individual satellite overpasses (acceptable)
 - Assumes no rainfall/runoff event
GRDA Designated 13 Sampling Sites

http://www.oclwa.org/pdf/2015Presentations
Field Sampling

- Boat (GPS enhanced, bathymetry)
- YSI multi-parameter Sampler
- Secchi Disc
- Van Dorn Sampler
- Sample bottles & Ice Chest
- Water sampling Hose
- Laboratory Analysis for QA/QC Conducted
Statistical Analysis of Data

- Regression
 - Chlorophyll a vs spectral bands
 - Stepwise elimination of bands
 - Band 2 (Blue) and Band 3 (Green) linear relationship

- Equations
 1. $\text{CHL-a} = 0.05456 \text{ Band 3}$
 2. $\text{CHL-a} = -33.1 + 0.2105 \text{ Band 2}$
 3. $\text{CHL-a} = -40.1 + 0.4138 \text{ Band 2} - 0.1349 \text{ Band 3}$
 4. $\text{CHL-a} = 20.32 \text{ Band2/Band3}$

- ANOVA
 - Different combinations of Bands 2 and 3 with CHL-a
Plot of CHL-a vs. Band 2, Band 3
Plot of CHL-a vs. Band 2, Band 3
Hypothesis

- Null Hypothesis (Ho): Selected bands cannot be used to predict CHL-a (non-significant relationship)

- Alternative Hypothesis (Ha): Selected bands are good predictors of CHL-a (significant relationship)

- Test: Reject Ho if P–Value < 0.05
Results of Regression Analysis

<table>
<thead>
<tr>
<th>Equation</th>
<th>R^2 (%)</th>
<th>RMSE</th>
<th>b_0</th>
<th>b_1</th>
<th>b_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chl a = b_0 + b_1Band 2</td>
<td>40.00</td>
<td>11.05</td>
<td>33.10</td>
<td>0.211</td>
<td>-</td>
</tr>
<tr>
<td>Chl a = b_0 + b_1Band 3</td>
<td>63.40</td>
<td>12.99</td>
<td>0</td>
<td>0.055</td>
<td>-</td>
</tr>
<tr>
<td>Chl a = b_0 + b_1Band 2 + b_2Band 3</td>
<td>51.83</td>
<td>10.10</td>
<td>-40.1</td>
<td>0.414</td>
<td>-0.135</td>
</tr>
<tr>
<td>Chl a = b_0 + b_1Band 2 / Band 3</td>
<td>57.57</td>
<td>13.72</td>
<td>0</td>
<td>12.16</td>
<td>-</td>
</tr>
</tbody>
</table>

RMSE: Root Mean Square Error

Desired outcome: High R-squared, Low RMSE
Summary of Regression Results

- Band 3 is a good predictor of CHL-a (p-Value < 0.05).
 - The equation accounts for 63% of the data

- Band 2 is a good predictor of CHL-a (P-Value < 0.05)
 - The equation accounts for 40% of the data

- Combining them gives a predictive potential in-between, with less RMSE
Results of the ANOVA

<table>
<thead>
<tr>
<th>Response variable</th>
<th>Treatment</th>
<th>Significant</th>
<th>p-value (α = 0.05)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHL-a (µg/L)</td>
<td>Date</td>
<td>Yes</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>Sample site</td>
<td>No</td>
<td>0.997</td>
</tr>
<tr>
<td></td>
<td>Date, Sample site</td>
<td>No</td>
<td><0.001, 0.077</td>
</tr>
<tr>
<td>Band 2 (nm)</td>
<td>Date</td>
<td>Yes</td>
<td>0.005</td>
</tr>
<tr>
<td></td>
<td>Sample site</td>
<td>No</td>
<td>0.274</td>
</tr>
<tr>
<td>Band 3 (nm)</td>
<td>Date</td>
<td>No</td>
<td>0.437</td>
</tr>
<tr>
<td></td>
<td>Sample site</td>
<td>Yes</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Desired trend: change in SR values reflects change in CHL-a conc.
Conclusions

- Different Combinations of Landsat 8 SR values in Bands 2 and 3 enhance prediction of CHL-a in Grand Lake, Oklahoma

- The predictive equations account for at least 40% of the data

- Few data points were utilized, relationships will change with more data points

- No processing of SR data was done; relationships might improve with pre-processing
Next steps

- Collect more *in situ* data in 2016
- Pre-process spectral data and combine with *in situ* data
- Re-run the tests using more data points, with a more robust software
- Build predictive models
Thank you!