Occupancy Modeling as a Tool to Delineate Invasive Species Distribution in Reservoir Riparian Areas

Jeffery R. Johnson¹

James M. Long²

¹Oklahoma Cooperative Fish and Wildlife Research Unit, Oklahoma State University, Stillwater, OK 74078

²US Geological Survey, ¹Oklahoma Cooperative Fish and Wildlife Research Unit, Oklahoma State University, Stillwater, OK 74078

03/30/2016

Layout

- Invasive Species
- Occupancy Modeling

- Asian Swamp Eels
- Methods
- Results
- Conclusions

Invasive Species

Reservoirs are more susceptible to the introduction and proliferation of non-native species (Johnson et al. 2008)

ATIONA

- Threaten Native Species
 - Predation
 - Competition
 - Hybridization
 - Loss of Biodiversity
 - Suite of Indirect Ecological Effects
 Davis (2009)

Occupancy Modeling

- Occupancy estimates can be severely biased when species are rare or elusive (McKenzie et al. 2003)
- Account for imperfect species detection through repeat sampling

JATIONAL

- Assumptions
 - Site Closure
 - No False Positive Detections
 - No unexplained heterogeneity
 - Survey Independence

Asian Swamp Eels

- Native to tropical and temperate climates of southeast Asia, Indonesia, and Australia
- Obligate Air breathers
- Capable of overland migration
- Cryptic
- Sedentary behavior (Likely high site fidelity)
- 4 known populations introduced into the continental U.S.
- Genetic variation within M. albus equivalent to that observed in some families of fish. (Collins et al. 2002)

ASEs in Georgia

- GA population has persisted since approximately 1990 (Freeman and Burgess 2000)
- Known to reside in 2 ponds and adjacent marsh area of the Chattahoochee River (Freeman et al. 2005)
- Possibly an undescribed species due to genetic analysis and observed variation in behavior (Collins et al. 2002)

NATIONAL

PARK

ERVICE

Long and LaFleur (2011)

Research Objective

Determine current ASE distribution within the Chattahoochee River

Methods

- 111 Sampling Locations within a 2km radius of known ASE occurrence
 - Sampling locations randomly selected from NHD layer broken into 5 m segments
 - 5 m segments were sampled with a standardized array of leaf litter traps
- Each site visited on 10 occasions from June August 2015
- Sampling-level covariates collected on every occasion
 - Temperature
 - Depth at each leaf litter trap

Methods Cont.

- Site-level covariates collected once
 - Aquatic Vegetation (as proportion of area)
 - Silt substrate (as proportion of area)
- Other site-level metrics
 - Distance from proposed invasion point
 - Mean transect depth over sampling season
 - Mean transect temperature over sampling season
 - Temperature variance over sampling season
- Single season models of detection and occupancy
- Interpolate covariate values for locations not sampled
- Apply model averaged estimates of occupancy to entire study area

Study Area

Leaf Litter Traps

- Unpublished data on LLT's indicated detection probability is low (11%)
- Alternative capture techniques have shown even lower detection probabilities

Results

> 31 ASEs captured at 14 unique transects

Site ID	Detection History	Total # of Detections	
184	0000001000	1	
181	0110010000	3	
180	1110000101	5	
172	000000001	1	
171	0000001000	1	
169	001000000	1	
168	000000001	1	
154	010000000	1	
153	0010100001	3	
152	0100101011	5	
147	010000000	1	
146	010000000	1	
143	1010011010	5	
108	100000000	1	

Detection Models

Model	K	AIC	ΔAIC	AIC Weight
psi(.)p(Temp+Mtd)	4	225.06	0	0.89
psi(.)p(Mtd)	3	229.67	4.61	0.08
psi(.)p(.)	2	233.37	8.31	0.01
psi(.)p(Temp)	3	234.77	9.71	< 0.01

Detection Estimate (at mean Temp+Mtd) = 0.174 SE = 0.039

NATIONAL PARK

Detection Model Fit

- C-Hat = 1.00
- Likelihood Ratio Test
 - psi(.)p(Temp+Mtd) , psi(.)p(.)

NATIONAL PARK SERVICE

▶ $x^2 = 12.31 \text{ DF} = 2 \text{ P} < 0.01$

Occupancy Model Selection

Pearson Correlation Matrix						
	Dst	Veg	Slt	Msd	Mst	Tvar
Dst	1.00	-0.50	-0.55	-0.01	0.01	-0.39
Veg		1.00	0.53	-0.31	0.51	0.46
Slt			1.00	-0.23	0.05	0.32
Msd				1.00	-0.32	-0.11
Mst					1.00	0.39
Tvar						1.00

Pearson's Correlation Coefficient (<|0.50|) used to eliminate multicollinearity among site-level covariates

Exploratory model selection approach due to lack of prior research

27 Candidate Models

All possible non-collinear combinations

psi(Veg)p(Temp+Mtd) psi(Veg+Tvar)p(Temp+Mtd) psi(Veg+Msd)p(Temp+Mtd) psi(Veg+Msd+Tvar)p(Temp+Mtd) psi(Slt+Msd)p(Temp+Mtd) psi(Slt+Mst)p(Temp+Mtd) psi(Slt)p(Temp+Mtd) psi(Dst+Msd)p(Temp+Mtd) psi(Slt+Msd+Mst)p(Temp+Mtd) psi(Slt+Msd+Tvar)p(Temp+Mtd) psi(Tvar)p(Temp+Mtd) psi(Dst+Msd+Mst)p(Temp+Mtd) psi(Dst+Msd+Mst)p(Temp+Mtd) psi(Slt+Msd+Tvar)p(Temp+Mtd)

psi(Slt+Mst+Tvar)p(Temp+Mtd) psi(Dst+Mst+Tvar)p(Temp+Mtd) psi(Slt+Msd+Mst+Tvar)p(Temp+Mtd) psi(Dst+Msd+Tvar)p(Temp+Mtd) psi(Dst)p(Temp+Mtd) psi(Dst)p(Temp+Mtd) psi(Msd+Tvar)p(Temp+Mtd) psi(Msd)p(Temp+Mtd) psi(Msd)p(Temp+Mtd) psi(Mst+Tvar)p(Temp+Mtd) psi(Msd+Mst+Tvar)p(Temp+Mtd) psi(Msd+Mst)p(Temp+Mtd) psi(Msd+Mst)p(Temp+Mtd) psi(Msd+Mst)p(Temp+Mtd)

NATIONAL

Models <10∆AIC

Model	Κ	AIC	ΔAIC	AIC Weight
psi(Veg)p(Temp+Mtd)	5	201.29	0.00	0.45
psi(Veg+Tvar)p(Temp+Mtd)	6	202.96	1.67	0.19
psi(Veg+Msd)p(Temp+Mtd)	6	203.01	1.72	0.19
psi(Veg+Msd+Tvar)p(Temp+Mtd)	7	204.84	3.55	0.08
psi(Slt+Msd)p(Temp+Mtd)	6	207.97	6.67	0.02
psi(Slt+Mst)p(Temp+Mtd)	6	208.41	7.11	0.01
psi(Slt)p(Temp+Mtd)	5	208.50	7.21	0.01
psi(Dst+Mst)p(Temp+Mtd)	6	209.43	8.14	0.01
psi(Dst+Msd)p(Temp+Mtd)	6	209.75	8.46	0.01
psi(Slt+Msd+Mst)p(Temp+Mtd)	7	209.77	8.48	0.01
psi(Slt+Msd+Tvar)p(Temp+Mtd)	7	209.89	8.60	0.01
psi(Tvar)p(Temp+Mtd)	6	209.99	8.70	0.01

Veg Tvar Msd Slt Mst

Occupancy Model Fit

- MacKenzie-Bailey Goodness-of-Fit test on two sub-global models of occupancy
- Parametric bootstrap with 10,000 simulations
 - Psi(Slt+Msd+Mst+Tvar)p(Temp+Mtd): c-hat = 0.86 p=0.44
 - Psi(Dst+Msd+Mst+Tvar)p(Temp+Mtd): c-hat =0.63 p=0.42

ATIONA

ASE Distribution

Occupancy Probabilities based on model averages

Warmer Colors = Higher Probability

1. 19/23

Conclusions

- ASE's appear to have a limited distribution within the Chattahoochee river
- Marsh areas have a higher probability of occupancy
- Distribution models can inform future sampling for monitoring, eradication, or suppression efforts

Broader Implications

- Occupancy models provide an informed analysis of species distribution that is robust to imperfect detection
- Detection probability should be incorporated into distribution models when feasible
 - Important for invasive species due to the potential implications of assuming absence
- Able to investigate relationship of covariates to detection and occupancy probabilities
- Occupancy modeling method can be applied to other invasive species and habitats

Acknowledgements

- Advisor Dr. James M. Long
- Technician Colt Holley
- National Park Service
- OSU Graduate Students

Questions?