Censored data may obscure low-range nutrient thresholds in reservoirs

Erin M. Grantz, Brian E. Haggard, and J. Thad Scott

Introduction

- ♦ Clean Water Action Plan (1998) & (2009) executive directive:
 - ♦ Adopt USEPA recommended criteria, or
 - ♦ Develop scientifically defensible numeric nutrient criteria at the state level
- Obstacles to developing scientifically defensible numeric nutrient criteria:
 - ♦ Political, economic, social
 - ♦ Data limitations

What are censored data?

- The value of the observation is unknown, except that it falls within a range of possible values
- ♦ For concentrations of environmental contaminants, this range is typically between 0 and a quantification limit (QL)
- Quantification limits
 - ♦ Detection limit
 - ♦ Reporting limit
 - ♦ In this study = Minimum concentration meeting desired confidence levels

Dataset attributes

- Texas Commission on Environmental Quality statewide reservoir water quality database
- ♦ 764 stations, ~ 100 reservoirs
- Parameters include:
 - ♦ Chlorophyll-a (chl-a)
 - ♦ Total phosphorus (TP)
 - Secchi transparency
- Common QL's:
 - \Leftrightarrow Chl-a 10 µg/L
 - \Rightarrow TP 0.060 or 0.050 mg/L
- % Stations with >50%censored data=
 - ♦ 40% for TP
 - ♦ 22% for chl-a

Trophic class	Chl-a	TP
TO MENT	(ug/L)	(mg/L)
Oligotrophic	<2.6	< 0.012
Mesotrophic	2.6 - 20	0.012 - 0.024
Eutrophic	20 - 56	0.024 - 0.096
Hypereutrophic	56 – 155+	0.096 - 0.384+

What to do with censored data?: Non-statistical assumptions

♦ Delete censored data

- ♦ Substitute a value
 - ♦ Substitute the QL
 - ♦ Substitute ½ the value of the QL
 - ♦ Substitute 0

What to do with censored data?: Statistical assumptions

- ♦ Kaplan-Meier survival analysis (KM) non parametric, uses ranking
- ♦ Maximum likelihood estimate (MLE) parametric, uses data distribution
- ♦ Regression order statistics (ROS) parametric, uses data distribution

Do these assumptions affect analytical outcomes?

Objective 1: Compare TP and chl-a reservoir station medians ($n \ge 12$) calculated with different assumptions about censored data

Medians were calculated

- 1. After substituting the QL for censored observations (Med_{sub}), and
- 2. By applying statistically-based methodologies (Med_{cen}), using R

Table 2.3.1. Summary of the conditions under which each method for calculating summary statistics in datasets with censored observations is preferred. Adapted from Helsel (2012).

Percent Censored	Amount of Available Data	
	<50 Observations	>50 Observations
< 50% censored	Kaplan-Meier	Kaplan-Meier
50-80% censored	Regression order statistics	Maximum likelihood estimate
>80% censored	Not recommended	Not recommended

Comparing medians

- Median comparison metric = %
 difference between station medians
- $\%Diff = \frac{(Mea_{sub} Mea_{cen})}{Med_{sub}} \times 100\%$

- ♦ %Diff vs. Censored data frequency:
 - 1. Non-parametric changepoint analysis (King & Richardson 2003)
 - 2. Linear regression analysis

Stressor

Different assumptions = different medians

- Difference seen as low as 16% censored data
- Most common effects, biggest differences at > 50% censored data
- Linear increase in %Diff between threshold & 80% censored data

Do assumptions about censored data affect analytical outcomes?

Objective 2: Calculate chl-a, TP, and Secchi transparency station medians calculated using four approaches to handling censored data & compare TP thresholds identified using changepoint analysis

- 1. Substitute QL
- 2. Substitute ½QL
- 3. Statistical methodologies to estimate measures of central tendency (0-80% censored data)
- 4. Hybrid method (statistical methodologies 0-80% & substitute values from linear regression model for >80% censored data).

Estimating medians for stations with >80% censored data

- 1. Regression model to project a median difference
- 2. Use projection + station Med_{sub} to estimate a median with censored data correction

$$\%Diff = \frac{(Med_{sub} - Med_{cen})}{Med_{sub}} \times 100\%$$

$$Med_{cenR} = Med_{sub} - \frac{(Med_{sub} \times \%Diff)}{100\%}$$

 $\%Diff = m \times \%Censored + b$

Results: Chl-a vs. TP

- \Rightarrow TP thresholds = 0.039 0.063 mg/L
- Thresholds differed with subbed values
- Statistical dataset threshold in agreement with subbed QL dataset
- Hybrid dataset threshold not equal to statistical dataset, but close

Results: Secchi vs. TP

- \Rightarrow TP thresholds = 0.025 0.061 mg/L
- Thresholds differed with subbed values
- Sub dataset
 thresholds for Secchi
 almost identical to
 those for Chl-a....

Results: Secchi vs. TP

- ♦ Mid-range TP threshold for statistical medians dataset
- BUT, much lower threshold identified in hybrid dataset...

Further analysis of hybrid method dataset

Threshold relationships may also be hierarchical

 Classification and regression tree analysis (CART; De'ath and Fabricius 2000)

Added complexity in hybrid data models

Multiple TP thresholds found for Chla response

♦ Low threshold = 0.017 mg/L

High threshold = 0.063 mg/L

Added complexity in hybrid data models

Multiple TP thresholds for Secchi response

♦ High threshold = 0.049 mg/L

Discussion

1. The assumptions we make about censored observations affect analytical outcomes

Substitution can introduce spurious trends

- These data are identical, except for assumptions about censored data!
- Inserting a single value for a large number of observations problematic

VS.

Substitution with QL

Substitution with ½ QL

Substitution can inflate weak trends

 \Rightarrow TP threshold = 0.063 mg/L identified in multiple median datasets

 But not a primary threshold & with much lower explanatory power

Substitution with QL

Discussion

1. The assumptions we make about censored observations affect analytical outcomes

Highly censored datasets with high QL's limit utility of even best practice methods for censored data analysis

Low-range & hierarchical thresholds obscured

- Max correction for censoring yielded lowest thresholds & hierarchy
- Not detectable when
 - 1. spurious trends are introduced with substitution, or
 - 2. information from sites with >80% censoring was excluded

We need better data!

- ♦ Multiple answer to the same question = uncertainty for lawmakers, regulators, & stakeholders
- ♦ We can achieve this goal...
 - Best practices should be used in collecting, analyzing, and documenting water quality data
 - ♦ Concentrations already identified as environmentally relevant should be considered in selecting analytical methods with relevant QL's

Acknowledgements

Texas Commission on Environmental Quality – funding and data source

TCEQ Project Team, Julie Mcentire & Jill Csekitz

Arkansas Water Resources Center support staff

Scott Biogeochemistry Lab

My coauthors, Thad Scott & Brian Haggard

